Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 136]
|
|
Сложность: 4 Классы: 8,9,10,11
|
Играют двое. У первого 1000 чётных карточек (2, 4, ..., 2000), у второго – 1001 нечётная (1, 3, ... , 2001). Ходят по очереди, начинает первый. Ход состоит в следующем: игрок, чья очередь ходить, выкладывает одну из своих карточек, а другой, посмотрев на неё, выкладывает одну из своих карточек; тот, у кого число на карточке больше, записывает себе одно очко, а обе выложенные карточки выбрасываются. Всего получается 1000 ходов (одна карточка второго не используется). Какое наибольшее число очков может гарантировать себе каждый из игроков (как бы ни играл его соперник)?
|
|
Сложность: 4 Классы: 8,9,10,11
|
Город представляет из себя клетчатый прямоугольник, в каждой клетке стоит пятиэтажный дом. Закон о реновации позволяет выбрать две соседних по стороне клетки, в которых стоят дома, и снести тот дом, где меньше этажей (либо столько же). При этом над вторым домом надстраивается столько этажей, сколько было в снесённом доме. Какое наименьшее число домов можно оставить в городе, пользуясь законом о реновации, если город имеет размеры
а) 20×20 клеток;
б) 50×90 клеток?
|
|
Сложность: 4 Классы: 8,9,10,11
|
Кусок сыра надо разрезать на части с соблюдением таких правил:
вначале режем сыр на два куска, затем один из них режем на два куска, затем один из трёх кусков опять режем на два куска, и т.д.;
после каждого разрезания части могут быть разными по весу, но отношение веса каждой части к весу любой другой должно быть строго больше заданного числа $R$.
а) Докажите, что при $R$ = 0,5 можно резать сыр так, что процесс никогда не остановится (после любого числа разрезаний можно будет отрезать ещё один кусок).
б) Докажите, что если $R$ > 0,5, то процесс резки когда-нибудь остановится.
в) На какое наибольшее число кусков можно разрезать сыр, если $R$ = 0,6?
|
|
Сложность: 4 Классы: 8,9,10,11
|
В каждом из $16$ отделений коробки $4\times 4$ лежит по золотой монете. Коллекционер помнит, что какие-то две лежащие рядом монеты (соседние по стороне) весят по $9$ грамм, а остальные по $10$ грамм. За какое наименьшее число взвешиваний на весах, показывающих общий вес в граммах, можно определить эти две монеты?
|
|
Сложность: 4 Классы: 8,9,10,11
|
В стране рыцарей (всегда говорят правду) и лжецов (всегда лгут) за круглым столом сидят в вершинах правильного десятиугольника 10 человек, среди которых есть лжецы. Путешественник может встать куда-то и спросить сидящих: "Каково расстояние от меня до ближайшего лжеца из вас?" После этого каждый отвечает ему. Какое минимальное количество вопросов должен задать путешественник так, чтобы гарантированно узнать, кто за столом лжецы? (Посторонних рядом нет, на стол вставать нельзя. Людей считайте точками. Все, включая путешественника, могут точно измерить любое расстояние.)
Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 136]