ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 106 107 108 109 110 111 112 >> [Всего задач: 1308]      



Задача 66401

Темы:   [ Математическая логика (прочее) ]
[ Принцип крайнего (прочее) ]
[ Оценка + пример ]
Сложность: 3+
Классы: 7,8

Автор: Пешнин А.

В какое наименьшее количество цветов можно покрасить натуральные числа так, чтобы любые два числа, отличающиеся на 2 или в два раза, были покрашены в разные цвета?
Прислать комментарий     Решение


Задача 66425

Тема:   [ Взвешивания ]
Сложность: 3+
Классы: 6,7,8

Есть 2018 гирек массами 1 г, 2 г, ..., 2018 г. Заяц положил на одну чашу весов две гирьки. Волк хотел двумя другими гирьками на другой чаше их уравновесить, но не смог. Какие гирьки мог взять Заяц?
Прислать комментарий     Решение


Задача 66431

Тема:   [ Математическая логика (прочее) ]
Сложность: 3+
Классы: 5,6,7

На острове живут три племени: рыцари, которые всегда говорят правду, лжецы, которые всегда лгут, и хитрецы, которые иногда говорят правду, а иногда лгут. За круглым столом сидят 100 представителей этих племен. Каждый из сидящих за столом произнес две фразы: 1) “Слева от меня сидит лжец”; 2) “Справа от меня сидит хитрец”. Сколько за столом рыцарей и сколько лжецов, если половина присутствующих – хитрецы?
Прислать комментарий     Решение


Задача 66436

Тема:   [ Математическая логика ]
Сложность: 3+
Классы: 5,6,7

За большим круглым столом сидят 60 человек, каждый из которых – рыцарь или лжец. Каждый из них произнес фразу: “Из пяти человек, сидящих подряд справа от меня, хотя бы двое – лжецы”. Сколько рыцарей может сидеть за этим столом?
Прислать комментарий     Решение


Задача 66516

Тема:   [ Игры-шутки ]
Сложность: 3+
Классы: 6,7,8

Имеется три кучки по 40 камней. Петя и Вася ходят по очереди, начинает Петя. За ход надо объединить две кучки, после чего разделить эти камни на четыре кучки. Кто не может сделать ход – проиграл. Кто из играющих (Петя или Вася) может выиграть, как бы ни играл соперник?
Прислать комментарий     Решение


Страница: << 106 107 108 109 110 111 112 >> [Всего задач: 1308]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .