ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи
|
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 44]
У каждого целого числа от n + 1 до 2n включительно (n – натуральное) возьмём наибольший нечётный делитель и сложим все эти делители.
Назовём девятизначное число красивым, если все его цифры различны.
Требуется записать число вида 7...7, используя только семёрки (их можно писать и по одной, и по нескольку штук подряд), причём разрешены только сложение, вычитание, умножение, деление и возведение в степень, а также скобки. Для числа 77 самая короткая запись – это просто 77. А существует ли число вида 7...7, которое можно записать по этим правилам, используя меньшее количество семёрок, чем в его десятичной записи?
Цифры натурального числа $n$ > 1 записали в обратном порядке и результат умножили на $n$. Могло ли получиться число, записываемое только единицами?
Можно ли представить число $11^{2018}$ в виде суммы кубов двух натуральных чисел?
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 44]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке