ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 56]      



Задача 65137

Темы:   [ Симметричная стратегия ]
[ Четность и нечетность ]
Сложность: 4-
Классы: 6,7

Автор: Фольклор

Придя в школу, Коля и Алиса обнаружили на доске надпись: "ГОРОДСКАЯ УСТНАЯ ОЛИМПИАДА". Они договорились сыграть в следующую игру: за один ход в этой надписи разрешается стереть произвольное количество одинаковых букв, а выигрывает тот, кто стирает последнюю букву. Первым ходил Коля и стёр последнюю букву "А". Как надо играть Алисе, чтобы обеспечить себе выигрыш?

Прислать комментарий     Решение

Задача 66532

Темы:   [ Симметричная стратегия ]
[ Теория алгоритмов (прочее) ]
Сложность: 4-
Классы: 8,9,10

На прямой сидят 2019 точечных кузнечиков. За ход какой-нибудь из кузнечиков прыгает через какого-нибудь другого так, чтобы оказаться на прежнем расстоянии от него. Прыгая только вправо, кузнечики могут добиться того, чтобы какие-то двое из них оказались на расстоянии ровно 1 мм друг от друга. Докажите, что кузнечики могут добиться того же, прыгая из начального положения только влево.
Прислать комментарий     Решение


Задача 66746

Тема:   [ Симметричная стратегия ]
Сложность: 4-
Классы: 8,9,10,11

На прямой сидят 2019 точечных кузнечиков. За ход какой-нибудь из кузнечиков прыгает через какого-нибудь другого так, чтобы оказаться на прежнем расстоянии от него. Прыгая только вправо, кузнечики могут добиться того, чтобы какие-то двое из них оказались на расстоянии ровно 1 мм друг от друга. Докажите, что кузнечики могут добиться того же, прыгая из начального положения только влево.

Прислать комментарий     Решение

Задача 98002

Темы:   [ Симметричная стратегия ]
[ Центральная симметрия помогает решить задачу ]
[ Индукция (прочее) ]
[ Неравенство треугольника (прочее) ]
Сложность: 4-
Классы: 7,8,9,10

Автор: Назаров Ф.

На некотором поле шахматной доски стоит фишка. Двое по очереди переставляют фишку, при этом на каждом ходу, начиная со второго, расстояние, на которое она перемещается, должно быть строго больше, чем на предыдущем ходу. Проигравшим считается тот, кто не может сделать очередной ход. Кто выигрывает при правильной игре? (Фишка ставится всегда точно в центр каждого поля.)

Прислать комментарий     Решение

Задача 102798

Темы:   [ Симметричная стратегия ]
[ Признаки делимости на 3 и 9 ]
[ Десятичная система счисления ]
Сложность: 4-
Классы: 7,8,9

Двое пишут 2k-значное число, используя цифры 1, 2, 3, 4, 5. Первую цифру пишет первый, вторую – второй. Третью снова первый и т.д. Может ли первый добиться того, чтобы полученное число делилось на 9, если второй хочет этому помешать? Рассмотреть случаи:   а)  k = 10;   б)  k = 15.

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 56]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .