Страница:
<< 13 14 15 16 17 18 19 [Всего задач: 94]
Требуется заполнить числами квадратную таблицу из n×n клеток так, чтобы сумма чисел на каждой из 4n – 2 диагоналей равнялась 1. Можно ли это сделать при
а) n = 55?
б) n = 1992?
|
|
Сложность: 4- Классы: 8,9,10
|
На бесконечной шахматной доске стоит конь. Найти все клетки, куда он может
попасть за 2n ходов.
|
|
Сложность: 4 Классы: 9,10,11
|
Король обошёл шахматную доску, побывав на каждом поле ровно один раз и вернувшись последним ходом на исходное поле. (Король ходит по обычным правилам: за один ход он может перейти по горизонтали, вертикали или диагонали на любое соседнее поле.) Когда нарисовали его путь, последовательно соединив центры полей, которые он проходил, получилась замкнутая ломаная без самопересечений. Какую наименьшую и какую наибольшую длину может она иметь? (Сторона клетки равна единице.)
|
|
Сложность: 3+ Классы: 10,11
|
Можно ли расставить в вершинах куба натуральные числа так, чтобы в каждой паре
чисел, связанных ребром, одно из них делилось на другое, а во всех других парах
такого не было?
Страница:
<< 13 14 15 16 17 18 19 [Всего задач: 94]