Страница:
<< 13 14 15 16 17 18
19 >> [Всего задач: 94]
|
|
Сложность: 2 Классы: 5,6,7
|
Даны 16 чисел: 1, 11, 21, 31 и т.д. (каждое следующее на 10 больше предыдущего).
Можно ли расставить их в таблице 4×4 так, чтобы разность каждых двух чисел, стоящих в соседних по стороне клетках, не делилась на 4?
|
|
Сложность: 2+ Классы: 5,6,7,8
|
Из шахматной доски вырезали две клетки – a1 и h8. Можно ли оставшуюся часть доски покрыть 31 косточкой домино так, чтобы каждая косточка покрывала ровно две клетки доски?
Можно ли замостить доминошками 1×2 шахматную доску 8×8, из которой
вырезаны
а) клеточки b3 и e7;
б) два противоположных угловых поля (a1 и h8)?
|
|
Сложность: 3 Классы: 6,7,8
|
Муравей ползает по проволочному каркасу куба, при этом он никогда не
поворачивает назад.
Может ли случиться, что в одной вершине он побывал 25 раз, а в каждой из остальных – по 20 раз?
|
|
Сложность: 3+ Классы: 10,11
|
Конём называется фигура, ход которой состоит в перемещении на n
клеток по горизонтали и на 1 по вертикали (или наоборот). Конь стоит на
некотором поле бесконечной шахматной доски. При каких n он может попасть на
любое заданное поле?
Страница:
<< 13 14 15 16 17 18
19 >> [Всего задач: 94]