Страница:
<< 30 31 32 33
34 35 36 >> [Всего задач: 199]
|
|
Сложность: 3+ Классы: 8,9,10
|
В ряд выписаны несколько нулей и единиц. Рассмотрим пары цифр в этом ряду (не только соседних), где левая цифра равна 1, а правая 0. Пусть среди этих пар ровно M таких, что между единицей и нулем этой пары стоит чётное число цифр, и ровно N таких, что между единицей и нулем этой пары стоит нечётное число цифр. Докажите, что M ≥ N.
|
|
Сложность: 3+ Классы: 7,8,9
|
Квадрат 8×8 клеток выкрашен в белый цвет. Разрешается выбрать в нём любой
прямоугольник из трёх клеток и перекрасить все их в противоположный цвет (белые
в чёрный, чёрные – в белый). Удастся ли несколькими такими операциями перекрасить весь квадрат в чёрный цвет?
|
|
Сложность: 3+ Классы: 9,10,11
|
На полях A, B и C в левом нижнем углу шахматной доски стоят белые ладьи (см. рис.). Разрешается делать ходы по обычным правилам, однако после любого хода каждая ладья должна быть под защитой какой-нибудь другой ладьи. Можно ли за несколько ходов переставить ладьи так, чтобы каждая попала на обозначенное той же буквой поле в правом верхнем углу?
|
|
Сложность: 4- Классы: 10,11
|
На доске написана функция sin $x$ + cos $x$. Разрешается написать на доске производную любой написанной ранее функции, а также сумму и произведение любых двух написанных ранее функций, так можно делать много раз. В какой-то момент на доске оказалась функция, равная для всех действительных $x$ некоторой константе $c$. Чему может равняться $c$?
План города представляет собой плоскость, разбитую на одинаковые правильные треугольники. Стороны треугольников – шоссейные дороги, а вершины треугольников – перекрестки. Из точек A и B, расположенных на одной дороге (стороне треугольника), одновременно в одном направлении с одинаковыми скоростями выезжают две машины. Доехав до любого перекрёстка, каждая машина может или продолжить свое движение в том же направлении, или же повернуть на 120° вправо или влево. Могут ли машины встретиться?
Страница:
<< 30 31 32 33
34 35 36 >> [Всего задач: 199]