Страница: 1 [Всего задач: 5]
|
|
Сложность: 3 Классы: 10,11
|
Экспонентой
y =
ex называется такая
функция, для которой выполнены условия
y'(
x) =
y(
x) и
y(0) = 1.
Какая последовательность {
an} будет обладать аналогичными
свойствами, если производную заменить на разностный оператор

?
|
|
Сложность: 4- Классы: 10,11
|
Многочлен степени n > 1 имеет n разных корней х1, х2, ..., хn. Его производная имеет корни y1, y2, ..., yn–1.
Докажите неравенство
|
|
Сложность: 4- Классы: 9,10,11
|
Существуют ли такие значения a и b, при которых уравнение
х4 – 4х3 + 6х² + aх + b = 0 имеет четыре различных действительных корня?
|
|
Сложность: 4 Классы: 10,11
|
Пусть f(x) = (x – a)(x – b)(x – c) – многочлен третьей степени с комплексными корнями a, b, c.
Докажите, что корни производной этого многочлена лежат внутри треугольника с вершинами в точках a, b, c.
[Теорема Гаусса-Люка]
|
|
Сложность: 4 Классы: 10,11
|
Пусть f(x) – многочлен степени n с корнями α1, ..., αn. Определим многоугольник M как выпуклую оболочку точек α1, ..., αn на комплексной плоскости. Докажите, что корни производной этого многочлена лежат внутри многоугольника M.
Страница: 1 [Всего задач: 5]