ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 5]      



Задача 61443

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Производная (прочее) ]
Сложность: 3
Классы: 10,11

Экспонентой y = ex называется такая функция, для которой выполнены условия y'(x) = y(x) и y(0) = 1. Какая последовательность {an} будет обладать аналогичными свойствами, если производную заменить на разностный оператор $ \Delta$?

Прислать комментарий     Решение

Задача 64613

Темы:   [ Многочлены (прочее) ]
[ Производная (прочее) ]
[ Средние величины ]
[ Теорема Виета ]
[ Неравенство Коши ]
Сложность: 4-
Классы: 10,11

Многочлен степени  n > 1  имеет n разных корней х1, х2, ..., хn. Его производная имеет корни y1, y2, ..., yn–1.
Докажите неравенство  

Прислать комментарий     Решение

Задача 116624

Темы:   [ Многочлены (прочее) ]
[ Производная (прочее) ]
[ Выпуклость и вогнутость (прочее) ]
Сложность: 4-
Классы: 9,10,11

Автор: Фольклор

Существуют ли такие значения a и b, при которых уравнение   х4 – 4х3 + 6х² + aх + b = 0  имеет четыре различных действительных корня?

Прислать комментарий     Решение

Задача 61135

Темы:   [ Алгебраические уравнения в C. Извлечение корня ]
[ Производная (прочее) ]
[ Геометрия комплексной плоскости ]
Сложность: 4
Классы: 10,11

Пусть  f(x) = (x – a)(x – b)(x – c)  – многочлен третьей степени с комплексными корнями a, b, c.
Докажите, что корни производной этого многочлена лежат внутри треугольника с вершинами в точках a, b, c.

Прислать комментарий     Решение

Задача 61136

 [Теорема Гаусса-Люка]
Темы:   [ Алгебраические уравнения в C. Извлечение корня ]
[ Производная (прочее) ]
[ Геометрия комплексной плоскости ]
Сложность: 4
Классы: 10,11

Пусть f(x) – многочлен степени n с корнями α1, ..., αn. Определим многоугольник M как выпуклую оболочку точек α1, ..., αn на комплексной плоскости. Докажите, что корни производной этого многочлена лежат внутри многоугольника M.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .