Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Укажите такое шестизначное число N, состоящее из различных цифр, что числа 2N, 3N, 4N, 5N, 6N отличаются от него перестановкой цифр.

Вниз   Решение


Докажите, что если квадрат числа начинается с 0,999...9 (100 девяток), то и само число начинается с 0,999...9 (100 девяток).

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 499]      



Задача 88229

Тема:   [ Десятичная система счисления ]
Сложность: 2-
Классы: 5,6,7

Найдите двузначное число, которое в 5 раз больше суммы своих цифр.
Прислать комментарий     Решение


Задача 31232

Темы:   [ Десятичная система счисления ]
[ Признаки делимости на 5 и 10 ]
Сложность: 2-
Классы: 6,7,8

Число x оканчивается на 5. Доказать, что x² оканчивается на 25.

Прислать комментарий     Решение

Задача 103744

Тема:   [ Десятичная система счисления ]
Сложность: 2-
Классы: 6

Найдите числа, равные удвоенной сумме своих цифр.

Прислать комментарий     Решение


Задача 30611

Темы:   [ Десятичная система счисления ]
[ Признаки делимости на 2 и 4 ]
Сложность: 2
Классы: 6,7,8

Докажите, что  a1a2...an–1an  ≡  an–1an (mod 4).

Прислать комментарий     Решение

Задача 78175

Темы:   [ Десятичная система счисления ]
[ Правило произведения ]
Сложность: 2
Классы: 7,8,9,10

Заметим, что если перевернуть лист, на котором написаны цифры, то цифры 0, 1, 8 не изменятся, 6 и 9 поменяются местами, остальные потеряют смысл. Сколько существует девятизначных чисел, которые при переворачивании листа не изменяются?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 499]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .