Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 67]
|
|
Сложность: 3 Классы: 6,7,8
|
В некоторой стране из столицы выходит 89 дорог, из города Дальний – одна дорога, из остальных 1988 городов – по 20 дорог.
Доказать, что из столицы можно проехать в Дальний.
|
|
Сложность: 3 Классы: 6,7,8
|
В графе 100 вершин, причём степень каждой из них не меньше 50. Доказать, что граф связен.
|
|
Сложность: 3 Классы: 6,7,8
|
Доказать, что
а) из связного графа можно выкинуть несколько рёбер так, чтобы осталось дерево;
б) в дереве с n вершинами ровно n – 1 ребро;
в) в дереве не меньше двух висячих вершин;
г) в связном графа из n вершин не меньше n – 1 ребра;
д) если в связном графе n вершин и n – 1 ребро, то он – дерево.
|
|
Сложность: 3 Классы: 5,6,7,8
|
Лифт в 100-этажном доме имеет 2 кнопки: "+7" и "–9" (первая поднимает лифт на 7 этажей, вторая опускает на 9).Можно ли проехать:
a) с 1-го на 2-й;
б) со 2-го на 1-й;
в) с любого на любой этаж?
Система точек, соединённых отрезками, называется "связной", если из каждой точки можно пройти в любую другую по этим отрезкам. Можно ли соединить пять точек в связную систему так, чтобы при стирании любого отрезка образовались ровно две связные системы точек, не связанные друг с другом? (Мы считаем, что в местах пересечения отрезков переход с одного из них на другой невозможен.)
Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 67]