ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В Анчурии всего K законов и N министров. Вероятность того, что случайно взятый министр знает случайно выбранный закон, равна p. Однажды министры собрались на совет, чтобы написать Концепцию. Если хотя бы один министр знает закон, то этот закон будет учтён в Концепции, в противном случае этот закон в Концепции учтён не будет. Найдите:
  а) Вероятность того, что ровно M законов будут учтены в Концепции.
  б) Математическое ожидание числа учтённых законов.

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 66640

Тема:   [ Корни. Степень с рациональным показателем (прочее) ]
Сложность: 3
Классы: 10,11

Автор: Шноль Д.Э.

Приведите пример таких целых чисел $a$, $b$, $c$, $d$, среди которых нет одинаковых, что $a^b=c^d$ и $b^a=d^c$.
Прислать комментарий     Решение


Задача 66611

Темы:   [ Корни. Степень с рациональным показателем (прочее) ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4
Классы: 9,10,11

Докажите, что для любых различных натуральных чисел $m$ и $n$ справедливо неравенство $|\sqrt[n]{m}-\sqrt[m]{n}|>\frac{1}{mn}$.
Прислать комментарий     Решение


Задача 35105

Темы:   [ Рациональные и иррациональные числа ]
[ Корни. Степень с рациональным показателем (прочее) ]
[ Показательные функции и логарифмы (прочее) ]
Сложность: 3+
Классы: 10,11

Существуют ли такие иррациональные числа a и b, что степень ab - число рациональное?
Прислать комментарий     Решение


Задача 116373

Темы:   [ Формулы сокращенного умножения (прочее) ]
[ Корни. Степень с рациональным показателем (прочее) ]
[ Рациональные и иррациональные числа ]
Сложность: 4-
Классы: 9,10,11

Целые числа m и n таковы, что сумма     целая. Верно ли, что оба слагаемых целые?

Прислать комментарий     Решение

Задача 60851

Темы:   [ Рациональные и иррациональные числа ]
[ Корни. Степень с рациональным показателем (прочее) ]
[ Тригонометрия (прочее) ]
Сложность: 4
Классы: 8,9,10

Докажите иррациональность следующих чисел:

а)   ;

б)   ;

в)   ;

г)   ;

д)  cos 10° ;

е)  tg 10° ;

ж)  sin 1° ;

з)  log23 .

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .