ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 105]      



Задача 98081

Темы:   [ Делимость чисел. Общие свойства ]
[ Тождественные преобразования ]
Сложность: 3
Классы: 7,8,9

Автор: Фомин Д.

Имеется n целых чисел  (n > 1).  Известно, что каждое из них отличается от произведения всех остальных на число, кратное n.
Докажите, что сумма квадратов этих чисел делится на n.

Прислать комментарий     Решение

Задача 98085

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Тождественные преобразования ]
[ Разложение на множители ]
[ Обыкновенные дроби ]
Сложность: 3
Классы: 7,8,9

Автор: Фомин Д.

Докажите, что произведение 99 дробей     где  k = 2, 3, ..., 100,  больше ⅔.

Прислать комментарий     Решение

Задача 98283

Темы:   [ Десятичная система счисления ]
[ Тождественные преобразования ]
Сложность: 3
Классы: 6,7,8

Шестизначное число начинается с цифры 5. Верно ли, что к нему всегда можно приписать справа шесть цифр так, чтобы получился полный квадрат?

Прислать комментарий     Решение

Задача 109521

Темы:   [ Простые числа и их свойства ]
[ Тождественные преобразования ]
Сложность: 3
Классы: 7,8,9

Натуральное число n таково, что числа  2n + 1  и  3n + 1  являются квадратами. Может ли при этом число  5n + 3  быть простым?

Прислать комментарий     Решение

Задача 115453

Темы:   [ Четность и нечетность ]
[ Тождественные преобразования ]
Сложность: 3
Классы: 7,8,9,10

Существуют ли нечётные целые числа х, у и z, удовлетворяющие равенству  (x + y)² + (x + z)² = (y + z)²?

Прислать комментарий     Решение

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 105]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .