Страница:
<< 12 13 14 15
16 17 18 >> [Всего задач: 102]
|
|
Сложность: 3- Классы: 8,9,10
|
Сколько существует таких натуральных n, не превосходящих 2012, что сумма 1n + 2n + 3n + 4n оканчивается на 0?
На окружности записаны шесть чисел: каждое равно модулю разности двух чисел,
стоящих после него по часовой стрелке.
Сумма всех чисел равна 1. Найти эти числа.
|
|
Сложность: 3 Классы: 7,8,9
|
По окружности записаны 30 чисел. Каждое из этих чисел равно модулю разности двух чисел, стоящих после него по часовой стрелке. Сумма всех чисел
равна 1. Найти эти числа.
|
|
Сложность: 3+ Классы: 6,7,8
|
a1 = a2 = 1, an+1 = anan–1 + 1. Доказать, что an не делится на 4.
По кругу расставили 1000 чисел, среди которых нет нулей, и раскрасили их поочередно в белый и чёрный цвета. Оказалось, что каждое чёрное число равно сумме двух соседних с ним белых чисел, а каждое белое число равно произведению двух соседних с ним чёрных чисел. Чему может быть равна сумма всех расставленных чисел?
Страница:
<< 12 13 14 15
16 17 18 >> [Всего задач: 102]