ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 5 >> [Всего задач: 23]      



Задача 61320

Темы:   [ Монотонность, ограниченность ]
[ Итерации ]
Сложность: 2+
Классы: 8,9,10

Докажите, что для монотонно возрастающей функции f (x) уравнения x = f (f (x)) и x = f (x) равносильны.

Прислать комментарий     Решение

Задача 67288

Тема:   [ Монотонность, ограниченность ]
Сложность: 3+
Классы: 8,9,10,11

Автор: Шноль Д.Э.

Каждая из функций $f(x)$ и $g(x)$ определена на всей числовой прямой и не является строго монотонной. Может ли быть, что и их сумма, и их разность строго монотонны на всей числовой прямой?
Прислать комментарий     Решение


Задача 64770

Темы:   [ Монотонность, ограниченность ]
[ Доказательство от противного ]
[ Индукция (прочее) ]
Сложность: 4-
Классы: 9,10,11

Автор: Храбров А.

Дана функция f, определённая на множестве действительных чисел и принимающая действительные значения. Известно, что для любых x и y, таких, что  x > y,  верно неравенство  (f(x))² ≤ f(y).  Докажите, что множество значений функции содержится в промежутке  [0,1].

Прислать комментарий     Решение

Задача 98155

Темы:   [ Монотонность, ограниченность ]
[ Показательные функции и логарифмы (прочее) ]
Сложность: 4
Классы: 10,11

Функция  f(x) на отрезке [a, b] равна максимуму из нескольких функций вида y = C·10–|x–d| (с различными d и C, причём все C положительны). Дано, что
f(a) = f(b). Докажите, что сумма длин участков, на которых функция возрастает, равна сумме длин участков, на которых функция убывает.

Прислать комментарий     Решение

Задача 110122

Темы:   [ Монотонность, ограниченность ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4+
Классы: 9,10,11

Функции  f(x) – x  и  f(x²) – x6  определены при всех положительных x и возрастают.
Докажите, что функция     также возрастает при всех положительных x.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 >> [Всего задач: 23]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .