Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 119]
При каких целых значениях n правильный треугольник со стороной n можно замостить плитками, имеющими форму равнобочной трапеции со сторонами 1, 1, 1, 2?
Квадрат 8×8 распилили на квадраты 2×2 и прямоугольники 1×4. При этом общая длина распилов оказалась равна 54.
Сколько фигурок каждого вида получилось?
|
|
Сложность: 3 Классы: 5,6,7,8
|
Квадратный лист бумаги разрезали на шесть кусков в форме выпуклых
многоугольников; пять кусков затерялись, остался один кусок в форме
правильного восьмиугольника (см. рисунок). Можно ли по одному этому
восьмиугольнику восстановить исходный квадрат?
|
|
Сложность: 3 Классы: 7,8,9
|
Можно ли из 18 доминошек 1×2 выложить квадрат 6×6 так, чтобы при этом не получалось ни одного прямого "шва", соединяющего противоположные стороны квадрата и идущего по краям плиток?
|
|
Сложность: 3 Классы: 8,9,10
|
Можно ли покрыть плоскость паркетом из прямоугольников так, чтобы все эти прямоугольники можно было разрезать одним прямолинейным разрезом?
Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 119]