Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В пирамиде ABCD двугранные углы с рёбрами AB , BC и CA равны α1 , α2 и α3 соответственно, а площади треугольников ABD , BCD и CAD равны соответственно S1 , S2 и S3 . Площадь треугольника ABC равна S . Докажите, что S = S1 cos α1 + S2 cos α2 + S3 cos α3 (некоторые из углов α1 , α2 и α3 могут быть тупыми).

   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 367]      



Задача 30651

Тема:   [ Уравнения в целых числах ]
Сложность: 3
Классы: 8,9

Найдите все целые решения уравнения  21x + 48y = 6.

Прислать комментарий     Решение

Задача 30656

Темы:   [ Уравнения в целых числах ]
[ Разложение на множители ]
[ Четность и нечетность ]
Сложность: 3
Классы: 8,9

Решить в целых числах уравнение  x² = 14 + y².

Прислать комментарий     Решение

Задача 30658

Темы:   [ Уравнения в целых числах ]
[ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 8,9

Решить в целых числах уравнение  x² + y² = 4z – 1.

Прислать комментарий     Решение

Задача 31282

Темы:   [ Уравнения в целых числах ]
[ Разложение на множители ]
Сложность: 3
Классы: 6,7,8

Решить в целых числах:  2x + 5y = xy – 1.

Прислать комментарий     Решение


Задача 31287

Темы:   [ Уравнения в целых числах ]
[ Разложение на множители ]
[ Четность и нечетность ]
Сложность: 3
Классы: 6,7,8

Доказать, что уравнение  x² + 1990 = y²  не имеет решений в целых числах.

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 367]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .