Страница:
<< 90 91 92 93
94 95 96 >> [Всего задач: 1110]
|
|
Сложность: 3+ Классы: 8,9,10
|
В таблице
0 1 2 3 ... 9
9 0 1 2 ... 8
8 9 0 1 ... 7
...
1 2 3 4 ... 0
отмечено 10 элементов так, что в каждой строке и каждом столбце отмечен один
элемент.
Докажите, что среди отмеченных элементов есть хотя бы два равных.
|
|
Сложность: 3+ Классы: 7,8,9
|
На клетчатой доске 5×5 расставили максимальное число шахматных коней так, чтобы они не били друг друга.
Докажите, что такая расстановка единственна.
В Италии выпускают часы, в которых часовая стрелка делает в сутки один
оборот, а минутная – 24 оборота, причём, как обычно, минутная стрелка длиннее часовой (в обычных часах часовая стрелка делает в сутки два оборота, а
минутная – 24). Рассмотрим все положения двух стрелок и нулевого деления
итальянских часов, которые встречаются и на обычных часах. Сколько таких положений существует на итальянских часах в течение суток? (Нулевое деление отмечает 24 часа в итальянских часах и 12 часов в обычных часах.)
Дана таблица n×n, в каждой её клетке записано число, причём все числа различны. В каждой строке отметили наименьшее число, и все отмеченные числа оказались в разных столбцах. Затем в каждом столбце отметили наименьшее число, и все отмеченные числа оказались в разных строках. Докажите, что оба раза отметили одни и те же числа.
Рассматривается доска 8×8, клетки которой пока не окрашены. Сколькими способами можно раскрасить доску в чёрный и белый цвета так, чтобы чёрных клеток было 31 и никакие две чёрные клетки не имели общей стороны? (Два способа раскраски считаются различными, если найдётся клетка, которая при одном из этих способах раскраски белая, а при другом – чёрная.)
Страница: << 90 91 92 93 94 95 96 >> [Всего задач: 1110]