ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
Из двух точек прямой проведены по две касательные к окружности. В образованные углы с вершинами в этих точках вписаны окружности равного радиуса. Докажите, что их линия центров параллельна данной прямой.
Точка M находится на продолжении хорды AB. Докажите, что если точка C окружности такова, что MC2 = MA . MB, то MC — касательная к окружности.
Имеется полоска 1×99, разбитая на 99 клеток 1×1, которые раскрашены через одну в чёрный и белый цвет. Разрешается перекрашивать одновременно все клетки любого клетчатого прямоугольника 1×k. За какое наименьшее число перекрашиваний можно сделать всю полоску одноцветной? Из середины гипотенузы восставлен перпендикуляр до пересечения с катетом, и полученная точка соединена с концом другого катета отрезком, который делит угол треугольника в отношении 2 : 5 (меньшая часть – при гипотенузе). Найдите этот угол. |
Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 598]
Из натурального числа вычли сумму его цифр и получили 2007. Каким могло быть исходное число?
Сформулируйте и докажите признаки делимости на 2n и 5n.
Последняя цифра квадрата натурального числа равна 6. Докажите, что его предпоследняя цифра нечётна.
Докажите, что если записать в обратном порядке цифры любого натурального числа, то разность исходного и нового числа будет делиться на 9.
Найдите наименьшее натуральное число, делящееся на 36, в записи которого встречаются все 10 цифр.
Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 598]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке