Страница:
<< 1 2 3 4 5 6 7 >> [Всего задач: 199]
Даны шесть чисел: 1, 2, 3, 4, 5, 6. Разрешается к любым двум из них прибавлять по 1.
Можно ли, проделав это несколько раз, сделать эти числа равными?
Набор чисел
a,
b,
c каждую секунду заменяется на
a +
b −
c,
b +
c −
a,
c +
a −
b. В начале имеется набор чисел 2000, 2002, 2003. Может ли через некоторое время получиться набор 2001, 2002, 2003.
|
|
Сложность: 3 Классы: 7,8,9,10
|
Имеется два трёхлитровых сосуда. В одном 1 л воды, в другом – 1 л
двухпроцентного раствора поваренной соли. Разрешается переливать любую часть
жидкости из одного сосуда в другой, после чего перемешивать. Можно ли за
несколько таких переливаний получить полуторапроцентный раствор в том сосуде,
в котором вначале была вода?
|
|
Сложность: 3 Классы: 6,7,8
|
На столе лежит куча из 637 ракушек. Из неё убирают одну ракушку и кучу делят на две (не обязательно поровну). Затем из какой-нибудь кучи, содержащей больше одной ракушки, снова убирают одну ракушку и снова кучу делят на две. И так далее. Можно ли через несколько ходов оставить на столе только кучи, состоящие из трёх ракушек?
|
|
Сложность: 3 Классы: 7,8,9
|
У племени семпоальтеков было 24 слитка золота, 26 редких жемчужин и 25 стеклянных бус. У Кортеса они могут обменять слиток золота и жемчужину на одни бусы, у Монтесумы – один слиток и одни бусы на одну жемчужину, а у тотонаков – одну жемчужину и одни бусы на один золотой слиток. После долгих обменов у семпоальтеков осталось только одна вещь. Какая?
Страница:
<< 1 2 3 4 5 6 7 >> [Всего задач: 199]