|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи
Радиус окружности, вписанной в прямоугольный треугольник с
острым углом
60o, равен
Коридор покрыт несколькими ковровыми дорожками (возможно, с наложениями). Докажите, что можно убрать несколько дорожек таким образом, чтобы оставшиеся дорожки покрывали коридор и сумма их длин не превышала удвоенной длины коридора. Радиусы двух окружностей равны R и r, а расстояние между их центрами равно d. Докажите, что эти окружности пересекаются тогда и только тогда, когда | R - r| < d < R + r. При каких значениях a и b выражение p = 2a² − 8ab + 17b² − 16a − 4b + 2044 принимает наименьшее значение? Чему равно это значение? |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 43]
Докажите неравенство для положительных значений переменных: (a + b + c + d)² ≤ 4(a² + b² + c² + d²).
Докажите неравенство для положительных значений переменных:
Докажите неравенство для положительных значений переменных:
При каких значениях a и b выражение p = 2a² − 8ab + 17b² − 16a − 4b + 2044 принимает наименьшее значение? Чему равно это значение?
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 43] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|