|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи С помощью циркуля и линейки постройте квадрат, три вершины которого лежали бы на трёх данных параллельных прямых. В один из дней года оказалось, что каждый житель города сделал не более одного звонка по телефону. Докажите, что население города можно разбить не более чем на три группы так, чтобы жители, входящие в одну группу, не разговаривали в этот день между собой по телефону. Натуральное число можно умножать на 2 и произвольным образом переставлять в нем цифры (запрещается лишь ставить 0 на первое место). |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 45]
Последовательность {xn} определяется условиями: xn+2 = xn – 1/xn+1 при n ≥ 1.
Натуральное число можно умножать на 2 и произвольным образом переставлять в нем цифры (запрещается лишь ставить 0 на первое место).
На доске написаны два 2007-значных числа. Известно, что из обоих чисел можно вычеркнуть по семь цифр так, чтобы получились одинаковые числа. Докажите, что в исходные числа можно вписать по семь цифр так, чтобы тоже получились одинаковые числа.
а) Докажите, что в таблице б) В каждой ли строке (кроме первых двух) встречается число, кратное 3?
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 45] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|