ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Трехзначное число. Трехзначное число начинается с цифры 4. Если эту цифру перенести в конец числа, то получится число, составляющее 0,75 исходного. Найти исходное число.

   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 598]      



Задача 102834

Тема:   [ Десятичная система счисления ]
Сложность: 2
Классы: 6,7

Из числа 1234567...5657585960 вычеркнуть 100 цифр так, чтобы оставшееся число было:  а) наименьшим;  б) наибольшим.

Прислать комментарий     Решение

Задача 102835

Темы:   [ Десятичная система счисления ]
[ Арифметика. Устный счет и т.п. ]
Сложность: 2
Классы: 5,6,7

Сколько нулей, единиц, троек? Подряд выписаны все целые числа от 1 до 100. Сколько раз в этой записи встречаются цифры: а) нуль? б) единица; в)три?
Прислать комментарий     Решение


Задача 102836

Темы:   [ Десятичная система счисления ]
[ Текстовые задачи ]
Сложность: 2
Классы: 7

Трехзначное число. Трехзначное число начинается с цифры 4. Если эту цифру перенести в конец числа, то получится число, составляющее 0,75 исходного. Найти исходное число.
Прислать комментарий     Решение


Задача 102973

Темы:   [ Десятичная система счисления ]
[ Признаки делимости на 5 и 10 ]
Сложность: 2
Классы: 5,6

Попробуйте найти все натуральные числа, которые больше своей последней цифры в 5 раз.

Прислать комментарий     Решение

Задача 102980

Темы:   [ Десятичная система счисления ]
[ Лингвистика ]
[ Перебор случаев ]
Сложность: 2
Классы: 5,6

Одно трехзначное число состоит из различных цифр, следующих в порядке возрастания, а в его названии все слова начинаются с одной и той же буквы. Другое трехзначное число, наоборот, состоит из одинаковых цифр, но в его названии все слова начинаются с разных букв. Какие это числа?
Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 598]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .