ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

На основаниях трапеции как на сторонах построены во внешнюю сторону два квадрата. Докажите, что отрезок, соединяющий центры квадратов, проходит через точку пересечения диагоналей трапеции.

Вниз   Решение


Решите уравнение в целых числах  m² − n² = 2002.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 >> [Всего задач: 17]      



Задача 102795

Темы:   [ Десятичная система счисления ]
[ Признаки делимости на 2 и 4 ]
Сложность: 3
Классы: 7,8,9

Доказать, что каждое из чисел последовательности 11, 111, 1111, ... не является квадратом натурального числа.

Прислать комментарий     Решение

Задача 102855

Темы:   [ Уравнения в целых числах ]
[ Признаки делимости на 2 и 4 ]
Сложность: 3
Классы: 7,8,9

Решите уравнение в целых числах  m² − n² = 2002.

Прислать комментарий     Решение

Задача 103889

Темы:   [ Признаки делимости на 3 и 9 ]
[ Признаки делимости на 2 и 4 ]
Сложность: 3
Классы: 7,8

Чтобы открыть сейф, нужно ввести код  – число, состоящее из семи цифр: двоек и троек. Сейф откроется, если двоек больше, чем троек, а код делится и на 3, и на 4. Придумайте код, открывающий сейф.

Прислать комментарий     Решение

Задача 64355

Темы:   [ Десятичная система счисления ]
[ Признаки делимости на 2 и 4 ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 9,10,11

Существует ли такое натуральное n, что для любых ненулевых цифр a и b число  anb  делится на  ab ?  (Через  x...y  обозначено число, получаемое приписыванием друг к другу десятичных записей чисел x, ..., y.)

Прислать комментарий     Решение

Задача 98401

Темы:   [ Десятичная система счисления ]
[ Признаки делимости на 2 и 4 ]
[ Разложение на множители ]
Сложность: 3+
Классы: 7,8,9

Автор: Фольклор

Квадрат целого числа имеет вид ...09 (оканчивается цифрами 0 и 9). Докажите, что третья справа цифра чётна.

Прислать комментарий     Решение

Страница: << 1 2 3 4 >> [Всего задач: 17]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .