ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Какое максимальное число ферзей, не бьющих друг друга, можно расставить на шахматной доске 8×8?

   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 536]      



Задача 102880

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3-
Классы: 6,7,8

Какое максимальное число ферзей, не бьющих друг друга, можно расставить на шахматной доске 8×8?

Прислать комментарий     Решение

Задача 104082

Темы:   [ Числовые таблицы и их свойства ]
[ Четность и нечетность ]
[ Простые числа и их свойства ]
Сложность: 3-
Классы: 6,7,8

В магическом квадрате суммы чисел в каждой строке, в каждом столбце и на обеих диагоналях равны.
Можно ли составить магический квадрат 3×3 из первых девяти простых чисел?

Прислать комментарий     Решение

Задача 107821

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 3-
Классы: 7,8,9

В некоторых клетках шахматной доски стоят фигуры. Известно, что на каждой горизонтали стоит хотя бы одна фигура, причём в разных горизонталях – разное число фигур. Докажите, что всегда можно отметить 8 фигур так, чтобы в каждой вертикали и каждой горизонтали стояла ровно одна отмеченная фигура.

Прислать комментарий     Решение

Задача 111357

Темы:   [ Числовые таблицы и их свойства ]
[ Комбинаторика (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3-
Классы: 8,9

Какое наибольшее число белых и чёрных фишек можно расставить на шахматной доске так, чтобы на каждой горизонтали и на каждой вертикали белых фишек было ровно в два раза больше, чем чёрных?

Прислать комментарий     Решение

Задача 115464

Тема:   [ Турниры и турнирные таблицы ]
Сложность: 3-
Классы: 7,8,9

Школьный чемпионат по настольному теннису проводили по олимпийской системе. Победитель выиграл шесть партий. Сколько участников турнира выиграло игр больше, чем проиграло? (На турнире по олимпийской системе участников разбивают на пары. Те, кто проиграл игру в первом туре, выбывают. Тех, кто выиграл в первом туре, снова разбивают на пары. Те, кто проиграл во втором туре, выбывают и т. д. В каждом туре для каждого участника нашлась пара.)

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 536]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .