ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Остроугольный треугольник разрезали прямолинейным разрезом на две (не обязательно треугольные) части, затем одну из этих частей – опять на две части, и так далее: на каждом шаге выбирали любую из уже имеющихся частей и разрезали её (по прямой) на две. Через несколько шагов оказалось, что исходный треугольник распался на несколько треугольников. Могут ли все они быть тупоугольными?

Вниз   Решение


Рассмотрим все рациональные числа между нулём и единицей, знаменатели которых не превосходят n, расположенные в порядке возрастания (ряд Фарея). Пусть a/b и c/d – какие-то два соседних числа (дроби несократимы). Доказать, что  |bc – ad| = 1.

ВверхВниз   Решение


Разобьём все натуральные числа на группы так, чтобы в первой группе было одно число, во второй — два, в третьей — три и т.д. Можно ли это сделать таким образом, чтобы из суммы чисел в каждой группе нацело извлекался корень седьмой степени?

ВверхВниз   Решение


Автор: Фольклор

Докажите, что если  а > 0,  b > 0,  c > 0  и  аb + bc + ca ≥ 12,  то  a + b + c ≥ 6.

ВверхВниз   Решение


Укажите пять целых положительных чисел, сумма которых равна 20, а произведение — 420.

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 84]      



Задача 103740

Темы:   [ Арифметические действия. Числовые тождества ]
[ Ребусы ]
Сложность: 2
Классы: 6

Автобусный билет будем считать счастливым, если между его цифрами можно в нужных местах расставить знаки четырёх арифметических действий и скобки так, чтобы значение полученного выражения равнялось 100. Является ли счастливым билет N123456?

Прислать комментарий     Решение


Задача 103797

Темы:   [ Арифметические действия. Числовые тождества ]
[ Ребусы ]
Сложность: 2
Классы: 6

Расставьте скобки так, чтобы получилось верное равенство:

1 - 2 . 3 + 4 + 5 . 6 . 7 + 8 . 9 = 1995.

Прислать комментарий     Решение


Задача 103837

Темы:   [ Арифметические действия. Числовые тождества ]
[ Разбиения на пары и группы; биекции ]
Сложность: 2
Классы: 6,7,8

Укажите пять целых положительных чисел, сумма которых равна 20, а произведение — 420.

Прислать комментарий     Решение


Задача 116852

Тема:   [ Арифметические действия. Числовые тождества ]
Сложность: 2
Классы: 8,9

Сравните числа:  А = 2011·20122012·201320132013  и  В = 2013·20112011·201220122012.

Прислать комментарий     Решение

Задача 102986

Тема:   [ Арифметические действия. Числовые тождества ]
Сложность: 2
Классы: 5,6

Мальвина велела Буратино умножить число на 4 и к результату прибавить 15, а Буратино умножил число на 15 и потом прибавил 4, однако, ответ получился верный. Какое это было число?
Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 84]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .