ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Треугольник можно разрезать на три подобных друг другу треугольника.
Доказать, что его можно разрезать на любое число подобных друг другу треугольников.

   Решение

Задачи

Страница: 1 2 3 4 5 >> [Всего задач: 24]      



Задача 78060

Темы:   [ Наименьший или наибольший угол ]
[ Системы точек ]
Сложность: 2+
Классы: 8,9

Докажите, что не существует на плоскости четырех точек A, B, C и D таких, что все треугольники ABC, BCD, CDA, DAB остроугольные.
Прислать комментарий     Решение


Задача 58046

Тема:   [ Наименьший или наибольший угол ]
Сложность: 3
Классы: 8,9

Докажите, что если длины всех сторон треугольника меньше 1, то его площадь меньше $ \sqrt{3}$/4.
Прислать комментарий     Решение


Задача 58048

Темы:   [ Наименьший или наибольший угол ]
[ Шестиугольники ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 8,9

В некоторой стране 100 аэродромов, причём все попарные расстояния между ними различны. С каждого аэродрома поднимается самолет и летит на ближайший к нему аэродром.
Докажите, что ни на один аэродром не может прилететь больше пяти самолетов.

Прислать комментарий     Решение

Задача 103931

Темы:   [ Наименьший или наибольший угол ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Подобные треугольники (прочее) ]
Сложность: 3+
Классы: 8,9

Треугольник можно разрезать на три подобных друг другу треугольника.
Доказать, что его можно разрезать на любое число подобных друг другу треугольников.

Прислать комментарий     Решение

Задача 58049

Тема:   [ Наименьший или наибольший угол ]
Сложность: 3+
Классы: 8,9

Внутри круга радиуса 1 лежат восемь точек. Докажите, что расстояние между некоторыми двумя из них меньше 1.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .