ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В круговом шахматном турнире каждый участник сыграл с каждым из остальных один раз. Назовём партию неправильной, если выигравший её шахматист в итоге набрал очков меньше чем проигравший. (Победа даёт 1 очко, ничья – ½, поражение – 0.) Могут ли неправильные партии составлять
  а) более 75% от общего количества партий в турнире;
  б) более 70%?

   Решение

Задачи

Страница: << 150 151 152 153 154 155 156 >> [Всего задач: 1110]      



Задача 105094

Темы:   [ Турниры и турнирные таблицы ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 5
Классы: 9,10,11

В круговом шахматном турнире каждый участник сыграл с каждым из остальных один раз. Назовём партию неправильной, если выигравший её шахматист в итоге набрал очков меньше чем проигравший. (Победа даёт 1 очко, ничья – ½, поражение – 0.) Могут ли неправильные партии составлять
  а) более 75% от общего количества партий в турнире;
  б) более 70%?

Прислать комментарий     Решение

Задача 107820

Темы:   [ Числовые таблицы и их свойства ]
[ Процессы и операции ]
[ Принцип Дирихле (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 5
Классы: 9,10,11

В таблице 2n×n были выписаны всевозможные строки длины n из чисел 1 и –1. Затем часть чисел заменили нулями. Докажите, что можно выбрать несколько строк, сумма которых есть строка из нулей. (Суммой строк называется строка, элементы которой являются суммами соответствующих элементов слагаемых.)

Прислать комментарий     Решение

Задача 109557

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Симметричная стратегия ]
[ Шахматная раскраска ]
[ Доказательство от противного ]
Сложность: 5
Классы: 7,8,9,10,11

Автор: Перлин А.

Игроки A и B по очереди ходят конем на шахматной доске 1994×1994. Игрок A может делать только горизонтальные ходы, то есть такие, при которых конь перемещается на соседнюю горизонталь. Игроку B разрешены только вертикальные ходы, при которых конь перемещается на соседнюю вертикаль. Игрок A ставит коня на поле, с которого начинается игра, и делает первый ход. При этом каждому игроку запрещено ставить коня на то поле, на котором он уже побывал в данной игре. Проигравшим считается игрок, которому некуда ходить. Докажите, что для игрока A существует выигрышная стратегия.

Прислать комментарий     Решение

Задача 109675

Темы:   [ Числовые таблицы и их свойства ]
[ Индукция (прочее) ]
[ Симметрия и инволютивные преобразования ]
Сложность: 5
Классы: 10,11

Автор: Любшин Д.

В каждую клетку квадратной таблицы размера  (2n – 1)×(2n – 1)  ставится одно из чисел 1 или – 1. Расстановку чисел назовём удачной, если каждое число равно произведению всех соседних с ним (соседними считаются числа, стоящие в клетках с общей стороной). Найдите число удачных расстановок.

Прислать комментарий     Решение

Задача 109679

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Теория алгоритмов (прочее) ]
[ Итерации ]
Сложность: 5
Классы: 9,10,11

Назовём лабиринтом шахматную доску 8×8, на которой между некоторыми полями поставлены перегородки. По команде ВПРАВО ладья смещается на одно поле вправо или, если справа находится край доски или перегородка, остаётся на месте; аналогично выполняются команды ВЛЕВО, ВВЕРХ и ВНИЗ. Программист пишет программу – конечную последовательность указанных команд, и даёт её пользователю, после чего пользователь выбирает лабиринт и помещает в него ладью на любое поле. Верно ли, что программист может написать такую программу, что ладья обойдёт все доступные поля в лабиринте при любом выборе пользователя?

Прислать комментарий     Решение

Страница: << 150 151 152 153 154 155 156 >> [Всего задач: 1110]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .