ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В коробке лежат карточки, занумерованные натуральными числами от 1 до 2006. На карточке с номером 2006 лежит карточка с номером 2005 и т. д. до 1. За ход разрешается взять одну верхнюю карточку (из любой коробки) и переложить ее либо на дно пустой коробки, либо на карточку с номером на единицу больше. Сколько пустых коробок нужно для того, чтобы переложить все карточки в другую коробку?

   Решение

Задачи

Страница: << 100 101 102 103 104 105 106 >> [Всего задач: 737]      



Задача 79645

Темы:   [ Теория игр (прочее) ]
[ Наибольшая или наименьшая длина ]
[ Рекуррентные соотношения (прочее) ]
[ Процессы и операции ]
Сложность: 5
Классы: 7,8

См. задачу 79385 в) и г).

Прислать комментарий     Решение

Задача 98344

Темы:   [ Взвешивания ]
[ Рекуррентные соотношения (прочее) ]
[ Раскладки и разбиения ]
[ Индукция (прочее) ]
Сложность: 5
Классы: 9,10,11

Имеется набор гирь, веса которых в граммах: 1, 2, 4,... , 512 (последовательные степени двойки) – по одной гире каждого веса. Груз разрешается взвешивать с помощью этого набора, кладя гири на обе чашки весов.
  а) Докажите, что никакой груз нельзя взвесить этими гирями более чем 89 способами.
  б) Приведите пример груза, который можно взвесить ровно 89 способами.

Прислать комментарий     Решение

Задача 105083

Темы:   [ Выигрышные и проигрышные позиции ]
[ Четность и нечетность ]
[ Обход графов ]
[ Процессы и операции ]
[ Индукция (прочее) ]
Сложность: 5
Классы: 9,10,11

Система укреплений состоит из блиндажей. Некоторые из блиндажей соединены траншеями, причём из каждого блиндажа можно перебежать в какой-нибудь другой. В одном из блиндажей спрятался пехотинец. Пушка может одним выстрелом накрыть любой блиндаж. В каждом промежутке между выстрелами пехотинец обязательно перебегает по одной из траншей в соседний блиндаж (даже если по соседнему блиндажу только что стреляла пушка, пехотинец может туда перебежать). Назовём систему надёжной, если у пушки нет гарантированной стратегии поражения пехотинца (то есть такой последовательности выстрелов, благодаря которой пушка поразит пехотинца независимо от его начального местонахождения и последующих передвижений).

  а) Докажите, что система укреплений, изображённая на рисунке, надёжна.
  б) Найдите все надёжные системы укреплений, которые перестают быть надёжными после разрушения любой из траншей.

Прислать комментарий     Решение

Задача 105155

Темы:   [ Теория алгоритмов (прочее) ]
[ Математическая логика (прочее) ]
Сложность: 5
Классы: 8,9,10

В тюрьму поместили 100 узников. Надзиратель сказал им:
"Я дам вам вечер поговорить друг с другом, а потом рассажу по отдельным камерам, и общаться вы больше не сможете. Иногда я буду одного из вас отводить в комнату, в которой есть лампа (вначале она выключена). Уходя из комнаты, вы можете оставить лампу как включенной, так и выключенной.

Если в какой-то момент кто-то из вас скажет мне, что вы все уже побывали в комнате, и будет прав, то я всех вас выпущу на свободу. А если неправ - скормлю всех крокодилам. И не волнуйтесь, что кого-нибудь забудут - если будете молчать, то все побываете в комнате, и ни для кого никакое посещение комнаты не станет последним."

Придумайте стратегию, гарантирующую узникам освобождение.
Прислать комментарий     Решение


Задача 105212

Темы:   [ Теория алгоритмов (прочее) ]
[ Индукция (прочее) ]
[ Процессы и операции ]
Сложность: 5
Классы: 9,10,11

В коробке лежат карточки, занумерованные натуральными числами от 1 до 2006. На карточке с номером 2006 лежит карточка с номером 2005 и т. д. до 1. За ход разрешается взять одну верхнюю карточку (из любой коробки) и переложить ее либо на дно пустой коробки, либо на карточку с номером на единицу больше. Сколько пустых коробок нужно для того, чтобы переложить все карточки в другую коробку?
Прислать комментарий     Решение


Страница: << 100 101 102 103 104 105 106 >> [Всего задач: 737]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .