Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

На вертикальную ось надели несколько колес со спицами. Вид сверху изображен на левом рисунке.


После этого колеса повернули. Новый вид сверху изображен на рисунке справа.
Могло ли колес быть:  а) три;  б) два?

Вниз   Решение


На столе лежат три красные палочки разной длины, сумма длин которых равняется 30 см, и пять синих палочек разной длины, сумма длин которых тоже равняется 30 см. Можно ли распилить те и другие палочки так, чтобы потом можно было расположить их парами, причём в каждой паре палочки были бы одинаковой длины, но разного цвета?

ВверхВниз   Решение


Число 1/42 разложили в бесконечную десятичную дробь. Затем вычеркнули 1997-ю цифру после запятой, а все цифры, стоящие справа от вычеркнутой цифры, сдвинули на 1 влево. Какое число больше: новое или первоначальное?

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 51]      



Задача 107631

Темы:   [ Периодические и непериодические дроби ]
[ Деление с остатком ]
[ Периодичность и непериодичность ]
Сложность: 3+
Классы: 8,9,10

Число 1/42 разложили в бесконечную десятичную дробь. Затем вычеркнули 1997-ю цифру после запятой, а все цифры, стоящие справа от вычеркнутой цифры, сдвинули на 1 влево. Какое число больше: новое или первоначальное?

Прислать комментарий     Решение

Задача 107989

Темы:   [ Периодические и непериодические дроби ]
[ Периодичность и непериодичность ]
[ Десятичная система счисления ]
Сложность: 3+
Классы: 9,10,11

При разложении чисел A и B в бесконечные десятичные дроби длины минимальных периодов этих дробей равны 6 и 12 соответственно. Чему может быть равна длина минимального периода числа  A + B?

Прислать комментарий     Решение

Задача 60887

Темы:   [ Периодические и непериодические дроби ]
[ Функция Эйлера ]
[ Арифметика остатков (прочее) ]
Сложность: 4-
Классы: 10,11

Пусть  (m, n) = 1.  Докажите, что сумма длин периода и предпериода десятичного представления дроби  m/n  не превосходит φ(n).

Прислать комментарий     Решение

Задача 60888

Темы:   [ Периодические и непериодические дроби ]
[ НОД и НОК. Взаимная простота ]
Сложность: 4-
Классы: 10,11

Обозначим через  L(m)  длину периода дроби   1/m. Докажите, что если  (m1, 10) = 1  и  (m2, 10) = 1,  то справедливо равенство  L(m1m2) = [L(m1), L(m2)].
Чему равна длина периода дроби  1/m1 + 1/m2?

Прислать комментарий     Решение

Задача 60892

Темы:   [ Периодические и непериодические дроби ]
[ Арифметика остатков (прочее) ]
Сложность: 4-
Классы: 9,10,11

Пусть число m имеет вид  m = 2a5bm1,  где  (10, m1) = 1.  Положим  k = max {a, b}.
Докажите, что период дроби 1/m начинается с (k+1)-й позиции после запятой, и имеет такую же длину, как и период дроби 1/m1.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 51]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .