Страница:
<< 8 9 10 11
12 13 14 >> [Всего задач: 78]
|
|
Сложность: 4 Классы: 8,9,10
|
P(х) – многочлен с целыми коэффициентами. Известно, что числа 1 и 2 являются его корнями. Докажите, что найдётся коэффициент, который меньше –1.
|
|
Сложность: 4 Классы: 9,10,11
|
Найдите какой-нибудь многочлен с целыми коэффициентами, корнем которого
является число + .
|
|
Сложность: 4 Классы: 9,10,11
|
Доказать, что для любого целого n число можно представить в виде разности где k – целое.
|
|
Сложность: 4 Классы: 8,9,10,11
|
Рассматриваются всевозможные квадратные трёхчлены вида x² + px + q, где p, q – целые, 1 ≤ p ≤ 1997, 1 ≤ q ≤ 1997.
Каких трёхчленов среди них больше: имеющих целые корни или не имеющих действительных корней?
|
|
Сложность: 4+ Классы: 10,11
|
Пусть P(x) – многочлен степени n > 1 с целыми коэффициентами, k – произвольное натуральное число. Рассмотрим многочлен
Qk(x) = P(P(...P(P(x))...)) (P применён k раз). Докажите, что существует не более n целых чисел t, при которых Qk(t) = t.
Страница:
<< 8 9 10 11
12 13 14 >> [Всего задач: 78]