ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 78]      



Задача 98149

Темы:   [ Тождественные преобразования ]
[ Целочисленные и целозначные многочлены ]
Сложность: 4-
Классы: 8,9,10

Можно ли подобрать два многочлена P(x) и Q(x) с целыми коэффициентами так, что  P – QP и  P + Q  – квадраты некоторых многочленов (причём Q не получается умножением P на число)?

Прислать комментарий     Решение

Задача 98373

Темы:   [ Доказательство тождеств. Преобразования выражений ]
[ Целочисленные и целозначные многочлены ]
[ Симметрия и инволютивные преобразования ]
[ Четность и нечетность ]
Сложность: 4-
Классы: 9,10

Перемножаются все выражения вида     (при всевозможных комбинациях знаков).
Докажите, что результат   а) целое число,   б) квадрат целого числа.

Прислать комментарий     Решение

Задача 110155

Темы:   [ Свойства коэффициентов многочлена ]
[ Целочисленные и целозначные многочлены ]
[ НОД и НОК. Взаимная простота ]
[ Теорема Виета ]
[ Делимость чисел. Общие свойства ]
Сложность: 4-
Классы: 9,10,11

Уравнение  xn + a1xn–1 + ... + an–1x + an = 0  с целыми ненулевыми коэффициентами имеет n различных целых корней.
Докажите, что если каждые два корня взаимно просты, то и числа an–1 и an взаимно просты.

Прислать комментарий     Решение

Задача 116682

Темы:   [ Исследование квадратного трехчлена ]
[ Целочисленные и целозначные многочлены ]
Сложность: 4-
Классы: 8,9,10

Автор: Жуков Г.

Назовем приведённый квадратный трёхчлен с целыми коэффициентами сносным, если его корни – целые числа, а коэффициенты не превосходят по модулю 2013. Вася сложил все сносные квадратные трёхчлены. Докажите, что у него получился трёхчлен, не имеющий действительных корней.

Прислать комментарий     Решение

Задача 65882

Темы:   [ Теория игр (прочее) ]
[ Целочисленные и целозначные многочлены ]
[ Оценка + пример ]
Сложность: 4
Классы: 9,10,11

Автор: Mudgal A.

Петя и Вася играют в такую игру. Сначала Петя задумывает некоторый многочлен P(x) с целыми коэффициентами. Далее делается несколько ходов. За ход Вася платит Пете рубль и называет любое целое число a по своему выбору, которое он ещё не называл, а Петя в ответ говорит, сколько решений в целых числах имеет уравнение  P(x) = a.  Вася выигрывает, как только Петя два раза (не обязательно подряд) назвал одно и то же число. Какого наименьшего числа рублей хватит Васе, чтобы гарантированно выиграть?

Прислать комментарий     Решение

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 78]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .