Страница: 1 [Всего задач: 3]
|
|
Сложность: 3 Классы: 9,10,11
|
Диагонали трапеции
ABCD перпендикулярны. Точка M – середина боковой стороны AB,
точка N симметрична центру описанной окружности треугольника ABD
относительно прямой AD. Докажите, что ∠CMN = 90°.
|
|
Сложность: 4 Классы: 9,10,11
|
Петя и Вася играют в такую игру. Сначала Петя задумывает некоторый многочлен P(x) с целыми коэффициентами. Далее делается несколько ходов. За ход Вася платит Пете рубль и называет любое целое число a по своему выбору, которое он ещё не называл, а Петя в ответ говорит, сколько решений в целых числах имеет уравнение P(x) = a. Вася выигрывает, как только Петя два раза (не обязательно подряд) назвал одно и то же число. Какого наименьшего числа рублей хватит Васе, чтобы гарантированно выиграть?
В остроугольном треугольнике ABC углы B и C больше 60°. Точки P, Q на сторонах AB, AC таковы, что A, P, Q и ортоцентр треугольника H лежат на одной окружности; K – середина отрезка PQ. Докажите, что ∠BKC > 90°.
Страница: 1 [Всего задач: 3]