ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Треугольники
>>
Равные треугольники. Признаки равенства
Подтемы:
|
||||||||||
Версия для печати
Убрать все задачи Треугольник ABC вписан в окружность S. Пусть A0 – середина дуги BC окружности S, не содержащей точку A, C0 – середина дуги окружности S, не содержащей точку C. Окружность S1 с центром A0 касается BC, окружность S2 с центром C0 касается AB. Докажите, что центр I вписанной в треугольник ABC окружности лежит на одной из общих внешних касательных к окружностям S1 и S2. Решение |
Страница: << 65 66 67 68 69 70 71 [Всего задач: 352]
Треугольник ABC вписан в окружность S. Пусть A0 – середина дуги BC окружности S, не содержащей точку A, C0 – середина дуги окружности S, не содержащей точку C. Окружность S1 с центром A0 касается BC, окружность S2 с центром C0 касается AB. Докажите, что центр I вписанной в треугольник ABC окружности лежит на одной из общих внешних касательных к окружностям S1 и S2.
Биссектрисы BB1 и CC1 треугольника ABC пересекаются в точке I. Прямая B1C1 пересекает описанную окружность треугольника ABC в точках M и N.
Страница: << 65 66 67 68 69 70 71 [Всего задач: 352] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|