ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 65 66 67 68 69 70 71 >> [Всего задач: 352]      



Задача 110129

Темы:   [ Касающиеся окружности ]
[ Вписанные и описанные окружности ]
[ Биссектриса делит дугу пополам ]
[ Углы между биссектрисами ]
[ Вспомогательные равные треугольники ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Формула Герона ]
Сложность: 4
Классы: 8,9,10

Пусть A0 – середина стороны BC треугольника ABC, а A' – точка касания с этой стороной вписанной окружности. Построим окружность Ω с центром в A0 и проходящую через A'. На других сторонах построим аналогичные окружности. Докажите, что если Ω касается описанной окружности на дуге BC, не содержащей A, то еще одна из построенных окружностей касается описанной окружности.

Прислать комментарий     Решение

Задача 108245

Темы:   [ Пересекающиеся окружности ]
[ Четыре точки, лежащие на одной окружности ]
[ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вспомогательные равные треугольники ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 5-
Классы: 8,9,10

Окружности S1 и S2 пересекаются в точках M и N. Через точку A окружности S1 проведены прямые AM и AN, пересекающие окружность S2 в точках B и C, а через точку D окружности S2 – прямые DM и DN, пересекающие S1 в точках E и F, причём точки A, E, F лежат по одну сторону от прямой MN, а D, B, C – по другую (см. рис.). Докажите, что если  AB = DE,  то точки A, F, C и D лежат на одной окружности, положение центра которой не зависит от выбора точек A и D.

Прислать комментарий     Решение

Задача 115419

Темы:   [ Перенос помогает решить задачу ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Треугольник (построения) ]
[ Вписанный угол, опирающийся на диаметр ]
[ Вспомогательные равные треугольники ]
Сложность: 5-
Классы: 8,9,10

Треугольники ABC и A1B1C1 имеют равные площади. Всегда ли можно построить при помощи циркуля и линейки треугольник A2B2C2, равный треугольнику A1B1C1 и такой, что прямые AA2, BB2 и CC2 будут параллельны?

Прислать комментарий     Решение

Задача 116616

Темы:   [ Площадь трапеции ]
[ Перегруппировка площадей ]
[ Площадь параллелограмма ]
[ Площадь треугольника (через высоту и основание) ]
[ Медиана делит площадь пополам ]
[ Вспомогательные равные треугольники ]
Сложность: 2+
Классы: 9,10,11

Автор: Фольклор

В трапеции ABCD  (AD || BC)  из точки Е – середины CD провели перпендикуляр EF к прямой AB. Найдите площадь трапеции, если  АВ = 5,  EF = 4.

Прислать комментарий     Решение

Задача 66220

Темы:   [ Треугольник (построения) ]
[ Вписанные и описанные окружности ]
[ Вспомогательная окружность ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Метод ГМТ ]
[ Вспомогательные равные треугольники ]
[ Против большей стороны лежит больший угол ]
[ Доказательство от противного ]
Сложность: 4
Классы: 9,10

Автор: Тригуб А.

Внутри остроугольного треугольника ABC постройте (с помощью циркуля и линейки) такую точку K, что  ∠KBA = 2∠KAB  и  ∠KBC = 2∠KCB.

Прислать комментарий     Решение

Страница: << 65 66 67 68 69 70 71 >> [Всего задач: 352]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .