ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Чему равна сумма цифр всех чисел от единицы до миллиарда?

   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 694]      



Задача 102831

Темы:   [ Последовательности ]
[ Выделение полного квадрата. Суммы квадратов ]
Сложность: 2+
Классы: 7,8

Точные квадраты. Доказать, что являются точными квадратами все числа вида 16; 1156; 111556 и т.д. (в середину предыдущего числа вставляется число 15).
Прислать комментарий     Решение


Задача 103968

Тема:   [ Геометрическая прогрессия ]
Сложность: 2+
Классы: 7,8,9

Когда Буратино отправился на занятия ВМШ, папа Карло пообещал ему заплатить за первую правильно решенную задачу одну копейку, за вторую - две копейки, за третью - четыре, и т.д. За месяц Буратино получил 655 руб 35 коп. Сколько задач он решил?
Прислать комментарий     Решение


Задача 108410

Темы:   [ Арифметическая прогрессия ]
[ Арифметика. Устный счет и т.п. ]
Сложность: 2+
Классы: 7,8,9

Чему равна сумма цифр всех чисел от единицы до миллиарда?
Прислать комментарий     Решение


Задача 35278

Тема:   [ Рекуррентные соотношения ]
Сложность: 2+
Классы: 8,9,10

Дорожно-ремонтная организация "Тише едешь - дальше будешь" занимается укладкой асфальта. Организация взяла обязательство покрыть асфальтом 100-километровый участок дороги. В первый день был заасфальтирован 1 км дороги. Далее, если уже заасфальтировано x км дороги, то в следующий день организация покрывает асфальтом еще 1/x км дороги. Докажите, что все же наступит тот день, когда организация "Тише едешь - дальше будешь" выполнит свое обязательство.
Прислать комментарий     Решение


Задача 35284

Тема:   [ Последовательности (прочее) ]
Сложность: 2+
Классы: 7,8,9

Имеются 552 гири весом 1г, 2г, 3г, ..., 552г. Разложите их на три равные по весу кучки.
Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 694]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .