Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Докажите, что внутри остроугольного треугольника существует такая точка, что основания перпендикуляров, опущенных из неё на стороны, являются вершинами равностороннего треугольника.

Вниз   Решение


Найдите геометрическое место центров всех вневписанных окружностей прямоугольных треугольников, имеющих данную гипотенузу.

ВверхВниз   Решение


Середину более длинной боковой стороны прямоугольной трапеции соединили с вершинами трапеции. При этом трапеция разделилась на три равнобедренных треугольника. Найдите величину острого угла трапеции.

Вверх   Решение

Задачи

Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 604]      



Задача 108937

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3
Классы: 8,9

Отрезки AM и BH – соответственно медиана и высота остроугольного треугольника ABC. Известно, что  AH = 1  и  2∠MAC = ∠MCA.  Найдите сторону BC.

Прислать комментарий     Решение

Задача 108955

Темы:   [ Диаметр, основные свойства ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9

Биссектриса угла A треугольника ABC пересекает серединный перпендикуляр к стороне AB в точке X, серединный перпендикуляр к стороне AC – в точке Y, а описанную окружность треугольника – в точке Z. Точки A, X, Y и Z лежат на биссектрисе в порядке перечисления. Докажите, что  AX = YZ.

Прислать комментарий     Решение

Задача 109464

Темы:   [ Средняя линия трапеции ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3
Классы: 8,9

Середину более длинной боковой стороны прямоугольной трапеции соединили с вершинами трапеции. При этом трапеция разделилась на три равнобедренных треугольника. Найдите величину острого угла трапеции.

Прислать комментарий     Решение

Задача 110805

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9

Дан равнобедренный треугольник ABC  (AB = AC).  На продолжении стороны AC за точку C отложен отрезок CD, равный BC. Оказалось, что  BD = AB.
Найдите углы треугольника ABC.

Прислать комментарий     Решение

Задача 110842

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Площадь треугольника (через высоту и основание) ]
Сложность: 3
Классы: 8,9

Окружность с центром на стороне AC равнобедренного треугольника ABC  (AB = BC)  касается сторон AB и BC.
Найдите радиус окружности, если площадь треугольника ABC равна 25, а отношение высоты BD к стороне AC равно  3 : 8.

Прислать комментарий     Решение

Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 604]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .