ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Докажите, что внутри остроугольного треугольника существует такая точка, что основания перпендикуляров, опущенных из неё на стороны, являются вершинами равностороннего треугольника. Найдите геометрическое место центров всех вневписанных окружностей прямоугольных треугольников, имеющих данную гипотенузу. Середину более длинной боковой стороны прямоугольной трапеции соединили с вершинами трапеции. При этом трапеция разделилась на три равнобедренных треугольника. Найдите величину острого угла трапеции. |
Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 604]
Отрезки AM и BH – соответственно медиана и высота остроугольного треугольника ABC. Известно, что AH = 1 и 2∠MAC = ∠MCA. Найдите сторону BC.
Биссектриса угла A треугольника ABC пересекает серединный перпендикуляр к стороне AB в точке X, серединный перпендикуляр к стороне AC – в точке Y, а описанную окружность треугольника – в точке Z. Точки A, X, Y и Z лежат на биссектрисе в порядке перечисления. Докажите, что AX = YZ.
Середину более длинной боковой стороны прямоугольной трапеции соединили с вершинами трапеции. При этом трапеция разделилась на три равнобедренных треугольника. Найдите величину острого угла трапеции.
Дан равнобедренный треугольник ABC (AB = AC). На продолжении стороны AC за точку C отложен отрезок CD, равный BC. Оказалось, что BD = AB.
Окружность с центром на стороне AC равнобедренного треугольника ABC (AB = BC) касается сторон AB и BC.
Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 604]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке