ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Докажите, что всякая трапеция, вписанная в окружность, — равнобедренная.

Вниз   Решение


Автор: Мусин О.

Докажите, что если числа a1, a2, ..., am  отличны от нуля и для любого целого  k = 0, 1, ..., n  (n < m – 1)  выполняется равенство:
a1 + a2·2k + a3·3k + ... + ammk = 0,  то в последовательности a1, a2, ..., am  есть по крайней мере  n + 1  пара соседних чисел, имеющих разные знаки.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 116650

Темы:   [ Многочлен n-й степени имеет не более n корней ]
[ Неравенства. Метод интервалов ]
Сложность: 3+
Классы: 10,11

Даны два различных приведённых кубических многочлена F(x) и G(x). Выписали все корни уравнений  F(x) = 0,  G(x) = 0,  F(x) = G(x). Оказалось, что выписаны восемь различных чисел. Докажите, что наибольшее и наименьшее из них не могут одновременно являться корнями многочлена F(x).

Прислать комментарий     Решение

Задача 64640

Темы:   [ Свойства коэффициентов многочлена ]
[ Неравенства. Метод интервалов ]
Сложность: 4-
Классы: 10,11

Дан многочлен  P(x) = a2nx2n + a2n–1x2n–1 + ... + a1x + a0,  у которого каждый коэффициент ai принадлежит отрезку  [100, 101].
При каком минимальном натуральном n у такого многочлена может найтись действительный корень?

Прислать комментарий     Решение

Задача 60958

Темы:   [ Исследование квадратного трехчлена ]
[ Методы решения задач с параметром ]
[ Неравенства. Метод интервалов ]
Сложность: 3+
Классы: 8,9,10

Найдите все значения параметра r, при которых уравнение  (r – 4)x² – 2(r – 3)x + r = 0  имеет два корня, причём каждый из них больше –1.

Прислать комментарий     Решение

Задача 60959

Темы:   [ Методы решения задач с параметром ]
[ Квадратные неравенства и системы неравенств ]
[ Неравенства. Метод интервалов ]
Сложность: 3+
Классы: 8,9,10

Найдите все значения x, удовлетворяющие неравенству  (2 – a)x³ + (1 – 2a)x² – 6x + 5 + 4aa² < 0  хотя бы при одном значении a из отрезка  [–1, 2].

Прислать комментарий     Решение

Задача 109626

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Многочлены (прочее) ]
[ Неравенства. Метод интервалов ]
Сложность: 5
Классы: 10,11

Автор: Мусин О.

Докажите, что если числа a1, a2, ..., am  отличны от нуля и для любого целого  k = 0, 1, ..., n  (n < m – 1)  выполняется равенство:
a1 + a2·2k + a3·3k + ... + ammk = 0,  то в последовательности a1, a2, ..., am  есть по крайней мере  n + 1  пара соседних чисел, имеющих разные знаки.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .