ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Каких чисел больше среди натуральных чисел от 1 до 1000000 включительно: представимых в виде суммы точного квадрата и точного куба или не представимых в таком виде?

   Решение

Задачи

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 157]      



Задача 65313

Темы:   [ Дискретное распределение ]
[ Правило произведения ]
Сложность: 3
Классы: 8,9,10,11

В городе, где живет Рассеянный Ученый, телефонные номера состоят из 7 цифр. Ученый легко запоминает телефонный номер, если этот номер палиндром, то есть он одинаково читается слева направо и справа налево. Например, номер 4435344 Ученый запоминает легко, потому что этот номер палиндром. А номер 3723627 не палиндром, поэтому Ученый такой номер запоминает с трудом. Найдите вероятность того, что телефонный номер нового случайного знакомого Ученый запомнит легко.

Прислать комментарий     Решение

Задача 76510

Темы:   [ Десятичная система счисления ]
[ Правило произведения ]
Сложность: 3
Классы: 8,9

Даны 6 цифр: 0, 1, 2, 3, 4, 5. Найти сумму всех четырёхзначных чётных чисел, которые можно написать этими цифрами (одна и та же цифра в числе может повторяться).

Прислать комментарий     Решение

Задача 109631

Темы:   [ Задачи с ограничениями ]
[ Правило произведения ]
Сложность: 3
Классы: 9

Каких чисел больше среди натуральных чисел от 1 до 1000000 включительно: представимых в виде суммы точного квадрата и точного куба или не представимых в таком виде?

Прислать комментарий     Решение

Задача 60413

Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Правило произведения ]
[ Подсчет двумя способами ]
[ Многочлены (прочее) ]
[ Целочисленные решетки (прочее) ]
Сложность: 3+
Классы: 9,10,11

Докажите тождества:

  а)  

  б)  

  в)  

  г)  

  д)  

(Попробуйте доказать эти тождества тремя разными способами: пользуясь тем, что      – это количество k-элементных подмножеств в множестве из n элементов; исходя из того, что     – это коэффициент при xk у многочлена  (1 + x)n;  пользуясь "шахматным городом" из задачи 60395).

Прислать комментарий     Решение

Задача 97857

Темы:   [ Турниры и турнирные таблицы ]
[ Правило произведения ]
[ Принцип Дирихле (прочее) ]
[ Перебор случаев ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 7,8,9

Автор: Фольклор

На фестивале камерной музыки собралось шесть музыкантов. На каждом концерте часть музыкантов выступает, а остальные слушают их из зала. За какое наименьшее число концертов каждый из шести музыкантов сможет послушать (из зала) всех остальных?

Прислать комментарий     Решение

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 157]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .