Страница:
<< 10 11 12 13
14 15 16 >> [Всего задач: 94]
|
|
Сложность: 4+ Классы: 6,7,8
|
Решил шах проверить придворного мудреца. «Вот тебе шесть шкатулок, — сказал шах, — с надписями 1, 2, 3, 4, 5, 6 на крышках. В каждой шкатулке золотая монета, которая весит ровно столько граммов, сколько написано. Ты расставляешь шкатулки как угодно в клетках прямоугольника 2×3. Потом я втайне от тебя меняю местами монеты в каких-то двух шкатулках, стоящих в соседних по стороне клетках (или ничего не меняю). Затем ты укажешь на несколько шкатулок, а я назову тебе общий вес монет в них. Если после этого правильно определишь, какие монеты я переложил, останешься при дворе. А не сможешь — прогоню вон!»
Как может действовать мудрец, чтобы выдержать испытание?
|
|
Сложность: 4+ Классы: 7,8,9,10
|
Какое наибольшее число коней можно расставить на доске 5×5 клеток так, чтобы каждый из них бил ровно двух других?
|
|
Сложность: 5- Классы: 8,9,10
|
Можно ли прямоугольник 5×7 покрыть уголками из трех клеток (т.е. фигурками,
которые получаются из квадрата 2×2 удалением одной клетки), не выходящими за его пределы, в
несколько слоев так, чтобы каждая клетка прямоугольника была покрыта одинаковым числом клеток,
принадлежащих уголкам?
|
|
Сложность: 5- Классы: 8,9,10,11
|
Куб размером
10×10×10 сложен из 500 чёрных и 500 белых кубиков
в шахматном порядке (кубики, примыкающие друг к другу гранями, имеют
различные цвета). Из этого куба вынули 100 кубиков так, чтобы в каждом из 300
рядов размером
1×1×10, параллельных какому-нибудь ребру куба,
не хватало ровно одного кубика. Докажите, что число вынутых чёрных кубиков
делится на 4.
|
|
Сложность: 5 Классы: 8,9,10
|
В некоторых клетках доски 100×100 стоит по фишке. Назовём клетку красивой, если в соседних с ней по стороне клетках стоит чётное число фишек.
Может ли ровно одна клетка доски быть красивой?
Страница:
<< 10 11 12 13
14 15 16 >> [Всего задач: 94]