Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Фокусник отгадывает площадь выпуклого 2008-угольника A1A2... A2008, находящегося за ширмой. Он называет две точки на периметре многоугольника; зрители отмечают эти точки, проводят через них прямую и сообщают фокуснику меньшую из двух площадей частей, на которые 2008-угольник разбивается этой прямой. При этом в качестве точки фокусник может назвать либо вершину, либо точку, делящую указанную им сторону в указанном им численном отношении. Докажите, что за 2006 вопросов фокусник сможет отгадать площадь многоугольника.

Вниз   Решение


Автор: Назаров Ф.

Автомат при опускании гривенника выбрасывает пять двушек, а при опускании двушки – пять гривенников.
Может ли Петя, подойдя к автомату с одной двушкой, получить после нескольких опусканий одинаковое количество двушек и гривенников?

ВверхВниз   Решение


Автор: Лифшиц Ю.

Дан выпуклый 2000-угольник, никакие три диагонали которого не пересекаются в одной точке. Каждая из его диагоналей покрашена в один из 999 цветов. Докажите, что существует треугольник, все стороны которого целиком лежат на диагоналях одного цвета. (Вершины треугольника не обязательно должны оказаться вершинами исходного многоугольника.)

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 126]      



Задача 115449

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Замощения костями домино и плитками ]
Сложность: 4
Классы: 8,9,10,11

Какое наименьшее количество трехклеточных уголков можно разместить в квадрате 8× 8 так, чтобы в этот квадрат больше нельзя было поместить ни одного такого уголка?
Прислать комментарий     Решение


Задача 116301

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Неравенства с площадями ]
[ Площадь. Одна фигура лежит внутри другой ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 4
Классы: 8,9

В квадрате со стороной, равной 1, произвольно берут 101 точку (не обязательно внутри квадрата, возможно, часть на сторонах), причём никакие три из них не лежат на одной прямой. Докажите, что существует треугольник с вершинами в этих точках, площадь которого не больше 0,01.
Прислать комментарий     Решение


Задача 109748

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Раскраски ]
[ Выпуклые многоугольники ]
[ Многоугольники (прочее) ]
Сложность: 4+
Классы: 8,9,10

Автор: Лифшиц Ю.

Дан выпуклый 2000-угольник, никакие три диагонали которого не пересекаются в одной точке. Каждая из его диагоналей покрашена в один из 999 цветов. Докажите, что существует треугольник, все стороны которого целиком лежат на диагоналях одного цвета. (Вершины треугольника не обязательно должны оказаться вершинами исходного многоугольника.)
Прислать комментарий     Решение


Задача 58085

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Вписанные и описанные многоугольники ]
[ Покрытия ]
Сложность: 4+
Классы: 8,9,10

В квадрате со стороной 1 находится 51 точка. Докажите, что какие-то три из них можно накрыть кругом радиуса 1/7.
Прислать комментарий     Решение


Задача 78291

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Принцип Дирихле (углы и длины) ]
[ Круг, сектор, сегмент и проч. ]
[ Системы точек ]
Сложность: 4+
Классы: 8,9,10

На плоскости даны 25 точек; известно, что из любых трёх точек можно выбрать две, расстояние между которыми меньше 1. Доказать, что среди данных точек найдутся 13, лежащие в круге радиуса 1.
Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 126]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .