|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Периметр выпуклого четырёхугольника равен 2004, одна из диагоналей равна 1001. Может ли вторая диагональ быть равна а) 1; б) 2; в) 1001? Пусть α , β , γ – плоские углы трёхгранного угла SABC с вершиной S , противолежащие рёбрам SA , SB , SC соответственно; A , B , C – двугранные углы при этих рёбрах. Докажите, что Многочлен P(x) степени n имеет n различных действительных корней. Какое наибольшее число его коэффициентов может равняться нулю? |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 52]
Докажите, что при умножении многочлена (x + 1)n–1 на любой многочлен, отличный от нуля, получается многочлен, имеющий не менее n отличных от нуля коэффициентов.
P(х) – многочлен с целыми коэффициентами. Известно, что числа 1 и 2 являются его корнями. Докажите, что найдётся коэффициент, который меньше –1.
Многочлен P(x) степени n имеет n различных действительных корней. Какое наибольшее число его коэффициентов может равняться нулю?
Пусть многочлен P(x) = anxn + an–1xn–1 + ... + a0 имеет хотя бы один действительный корень и a0 ≠ 0. Докажите, что, последовательно вычеркивая в некотором порядке одночлены в записи P(x), можно получить из него число a0 так, чтобы каждый промежуточный многочлен также имел хотя бы один действительный корень.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 52] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|