ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В таблице 99×101 расставлены кубы натуральных чисел, как показано на рисунке.

Докажите, что сумма всех чисел в таблице делится на 200.

   Решение

Задачи

Страница: << 137 138 139 140 141 142 143 >> [Всего задач: 1110]      



Задача 109878

Темы:   [ Числовые таблицы и их свойства ]
[ Формулы сокращенного умножения (прочее) ]
Сложность: 4
Классы: 7,8,9

Можно ли в таблице 11×11 расставить натуральные числа от 1 до 121 так, чтобы числа, отличающиеся друг от друга на единицу, располагались в клетках с общей стороной, а все точные квадраты попали в один столбец?

Прислать комментарий     Решение

Задача 109918

Темы:   [ Задачи с неравенствами. Разбор случаев ]
[ Теория алгоритмов (прочее) ]
[ Принцип Дирихле (прочее) ]
[ Оценка + пример ]
Сложность: 4
Классы: 8,9,10

а) В городе Мехико для ограничения транспортного потока для каждой частной автомашины устанавливаются два дня недели, в которые она не может выезжать на улицы города. Семье требуется каждый день иметь в распоряжении не менее десяти машин. Каким наименьшим количеством машин может обойтись семья, если её члены могут сами выбирать запрещенные дни для своих автомобилей?

б) В Мехико для каждой частной автомашины устанавливается один день в неделю, в который она не может выезжать на улицы города. Состоятельная семья из десяти человек подкупила полицию, и для каждой машины они называют два дня, один из которых полиция выбирает в качестве невыездного дня. Какое наименьшее количество машин нужно купить семье, чтобы каждый день каждый член семьи мог самостоятельно ездить, если утверждение невыездных дней для автомобилей идёт последовательно?

Прислать комментарий     Решение

Задача 110043

Темы:   [ Числовые таблицы и их свойства ]
[ Симметрия и инволютивные преобразования ]
[ Разложение на множители ]
Сложность: 4
Классы: 8,9,10

В таблице 99×101 расставлены кубы натуральных чисел, как показано на рисунке.

Докажите, что сумма всех чисел в таблице делится на 200.

Прислать комментарий     Решение

Задача 110046

Темы:   [ Таблицы и турниры (прочее) ]
[ Раскраски ]
[ Симметрия и инволютивные преобразования ]
[ Уравнения в целых числах ]
Сложность: 4
Классы: 8,9,10

Клетки таблицы 200×200 окрашены в чёрный и белый цвета так, что чёрных клеток на 404 больше, чем белых.
Докажите, что найдётся квадрат 2×2, в котором число белых клеток нечётно.

Прислать комментарий     Решение

Задача 110202

Темы:   [ Турниры и турнирные таблицы ]
[ Перебор случаев ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 8,9,10,11

В гоночном турнире 12 этапов и n участников. После каждого этапа все участники в зависимости от занятого места k получают баллы ak (числа ak натуральны, и  a1 > a2 > ... > an).  При каком наименьшем n устроитель турнира может выбрать числа a1, ..., an так, что после предпоследнего этапа при любом возможном распределении мест хотя бы двое участников имели шансы занять первое место.

Прислать комментарий     Решение

Страница: << 137 138 139 140 141 142 143 >> [Всего задач: 1110]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .