ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Черепанов Е.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 2 >> [Всего задач: 6]      



Задача 35558

Темы:   [ Комбинаторика (прочее) ]
[ Принцип крайнего ]
[ Мощность множества. Взаимно-однозначные отображения ]
[ Упорядочивание по возрастанию (убыванию) ]
Сложность: 3
Классы: 9,10,11

Пусть M – конечное множество чисел. Известно, что среди любых трёх его элементов найдутся два, сумма которых принадлежит M.
Какое наибольшее число элементов может быть в M?

Прислать комментарий     Решение

Задача 98455

Темы:   [ Неравенства для площади треугольника ]
[ Площадь треугольника (через высоту и основание) ]
[ Монотонность, ограниченность ]
[ Квадратичные неравенства (несколько переменных) ]
Сложность: 3+
Классы: 8,9

Пусть ABC – остроугольный треугольник, C' и A' – произвольные точки на сторонах AB и BC соответственно, B' – середина стороны AC.
  а) Докажите, что площадь треугольника A'B'C' не больше половины площади треугольника ABC.
  б) Докажите, что площадь треугольника A'B'C' равна четверти площади треугольника ABC тогда и только тогда, когда хотя бы одна из точек A', C' совпадает с серединой соответствующей стороны.

Прислать комментарий     Решение

Задача 110005

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Делимость чисел. Общие свойства ]
[ Арифметические действия. Числовые тождества ]
Сложность: 3+
Классы: 8,9,10

Существуют ли 10 таких различных целых чисел, что все суммы, составленные из девяти из них – точные квадраты?

Прислать комментарий     Решение

Задача 110046

Темы:   [ Таблицы и турниры (прочее) ]
[ Раскраски ]
[ Симметрия и инволютивные преобразования ]
[ Уравнения в целых числах ]
Сложность: 4
Классы: 8,9,10

Клетки таблицы 200×200 окрашены в чёрный и белый цвета так, что чёрных клеток на 404 больше, чем белых.
Докажите, что найдётся квадрат 2×2, в котором число белых клеток нечётно.

Прислать комментарий     Решение

Задача 98555

Темы:   [ Параллельный перенос (прочее) ]
[ Геометрия на клетчатой бумаге ]
[ Центральная симметрия помогает решить задачу ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Экстремальные свойства треугольника (прочее) ]
[ Доказательство от противного ]
Сложность: 5-
Классы: 9,10,11

На координатной плоскости расположили треугольник так, что его сдвиги на векторы с целочисленными координатами не перекрываются.
  а) Может ли площадь такого треугольника быть больше ½?
  б) Найдите наибольшую возможную площадь такого треугольника.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .