ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Пусть a, b, c, d, e и f – некоторые числа, причём  ace ≠ 0.  Известно, что значения выражений  |ax + b| + |cx + d|  и  |ex + f |  равны при всех значениях x.
Докажите, что  ad = bc.

   Решение

Задачи

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 89]      



Задача 110081

Темы:   [ Свойства модуля. Неравенство треугольника ]
[ Уравнения с модулями ]
[ Системы линейных уравнений ]
Сложность: 3+
Классы: 8,9

Пусть a, b, c, d, e и f – некоторые числа, причём  ace ≠ 0.  Известно, что значения выражений  |ax + b| + |cx + d|  и  |ex + f |  равны при всех значениях x.
Докажите, что  ad = bc.

Прислать комментарий     Решение

Задача 109733

Темы:   [ Доказательство от противного ]
[ Примеры и контрпримеры. Конструкции ]
[ Системы линейных уравнений ]
[ Уравнения в целых числах ]
Сложность: 5
Классы: 9,10,11

Участникам тестовой олимпиады было предложено n вопросов. Жюри определяет сложность каждого из вопросов: целое положительное количество баллов, получаемых участниками за правильный ответ на вопрос. За неправильный ответ начисляется 0 баллов, все набранные участником баллы суммируются. Когда все участники сдали листки со своими ответами, оказалось, что жюри так может определить сложность вопросов, чтобы места между участниками распределились любым наперед заданным образом. При каком наибольшем числе участников это могло быть?

Прислать комментарий     Решение

Задача 35047

Темы:   [ Четность и нечетность ]
[ Взвешивания ]
[ Принцип крайнего (прочее) ]
[ Системы линейных уравнений ]
Сложность: 3+
Классы: 8,9

B cтаде 101 корова. Если увести любую одну, то оставшихся можно разделить на два стада по 50 коров в каждом, так что суммарный вес коров первого стада равен суммарному весу коров другого стада. Известно, что каждая корова весит целое число килограммов. Докажите, что все коровы весят одинаково.

Прислать комментарий     Решение

Задача 65978

Темы:   [ Взвешивания ]
[ Задачи с неравенствами. Разбор случаев ]
[ Примеры и контрпримеры. Конструкции ]
[ Системы линейных уравнений ]
Сложность: 3+
Классы: 6,7

У аптекаря есть три гирьки, с помощью которых он одному покупателю отвесил 100 г йода, другому – 101 г мёда, а третьему – 102 г перекиси водорода. Гирьки он ставил всегда на одну чашу весов, а товар – на другую. Могло ли быть так, что каждая гирька легче 90 г?

Прислать комментарий     Решение

Задача 77892

Темы:   [ Взвешивания ]
[ Принцип крайнего (прочее) ]
[ Четность и нечетность ]
[ Системы линейных уравнений ]
Сложность: 3+
Классы: 8,9

Имеется 13 гирь, каждая из которых весит целое число граммов. Известно, что любые 12 из них можно так разложить на две чашки весов, по шесть гирь на каждой, что наступит равновесие. Докажите, что все гири имеют один и тот же вес.

Прислать комментарий     Решение

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 89]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .