Страница:
<< 18 19 20 21
22 23 24 >> [Всего задач: 157]
|
|
Сложность: 4- Классы: 8,9,10
|
Назовём раскраску доски 8×8 в три цвета хорошей, если в любом уголке из пяти клеток присутствуют клетки всех трёх цветов. (Уголок из пяти клеток – это фигура, получающаяся из квадрата 3×3 вырезанием квадрата 2×2.) Докажите, что количество хороших раскрасок не меньше чем 68.
|
|
Сложность: 4 Классы: 9,10,11
|
Докажите, что существуют числа, не менее чем 100 способами представимые в виде суммы 2001 слагаемого, каждое из которых является 2000-й степенью целого числа.
|
|
Сложность: 4 Классы: 8,9,10
|
Существует ли 2016-значное число, перестановкой цифр которого можно получить 2016 разных 2016-значных полных квадратов?
|
|
Сложность: 4 Классы: 7,8,9
|
На всех клетках шахматной доски 8×8 расставлены натуральные числа.
Разрешается выделить любой квадрат размером 3×3 или 4×4 и
увеличить все числа в нём на 1. Мы хотим в результате нескольких таких операций
добиться, чтобы числа во всех клетках делились на 10. Всегда ли это удастся
сделать?
|
|
Сложность: 4 Классы: 8,9,10
|
Клетки шахматной доски 8×8 как-то занумерованы числами от 1 до 32, причём каждое число использовано дважды. Докажите, что можно так выбрать 32 клетки, занумерованные разными числами, что на каждой вертикали и на каждой горизонтали найдётся хотя бы по одной выбранной клетке.
Страница:
<< 18 19 20 21
22 23 24 >> [Всего задач: 157]