ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 157]      



Задача 60376

Темы:   [ Перестановки и подстановки (прочее) ]
[ Задачи с ограничениями ]
[ Правило произведения ]
Сложность: 2+
Классы: 7,8,9

а) Сколькими способами 28 учеников могут выстроиться в очередь в столовую?
б) Как изменится это число, если Петю Иванова и Колю Васина нельзя ставить друг за другом?

Прислать комментарий     Решение

Задача 60422

Темы:   [ Перестановки и подстановки ]
[ Задачи с ограничениями ]
[ Правило произведения ]
Сложность: 2+
Классы: 8,9

Сколько существует различных возможностей рассадить 5 юношей и 5 девушек за круглый стол с 10 креслами так, чтобы они чередовались?

Прислать комментарий     Решение

Задача 76473

Темы:   [ Арифметика остатков (прочее) ]
[ Задачи с ограничениями ]
[ Правило произведения ]
Сложность: 2+
Классы: 8,9

Сколько существует таких пар целых чисел x, y, заключённых между 1 и 1000, что  x² + y²  делится на 7.

Прислать комментарий     Решение

Задача 60391

Темы:   [ Сочетания и размещения ]
[ Системы точек и отрезков (прочее) ]
[ Правило произведения ]
[ Произвольные многоугольники ]
Сложность: 2+
Классы: 8,9

Сколько диагоналей имеет выпуклый:
а) 10-угольник;   б) k-угольник  (k > 3)?

Прислать комментарий     Решение

Задача 30704

Темы:   [ Сочетания и размещения ]
[ Задачи с ограничениями ]
[ Правило произведения ]
[ Десятичная система счисления ]
Сложность: 3-
Классы: 7,8

Сколько существует шестизначных чисел, у которых по три чётных и нечётных цифры?

Прислать комментарий     Решение

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 157]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .