ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Куб ABCDA1B1C1D1 рассечен на две части плоскостью, проходящей через вершину B , середину ребра B1C1 и точку M , лежащую на ребре AA1 так, что AM = 2A1M . Найдите отношение объёма части, содержащей точку B1 , к объёму всего куба.

   Решение

Задачи

Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 302]      



Задача 110436

Темы:   [ Отношение объемов ]
[ Куб ]
[ Построения на проекционном чертеже ]
Сложность: 3
Классы: 10,11

Куб ABCDA1B1C1D1 рассечен на две части плоскостью, проходящей через вершину B , середину ребра B1C1 и точку M , лежащую на ребре AA1 так, что AM = 2A1M . Найдите отношение объёма части, содержащей точку B1 , к объёму всего куба.
Прислать комментарий     Решение


Задача 111123

Темы:   [ Ортогональное проектирование ]
[ Прямоугольные параллелепипеды ]
Сложность: 3
Классы: 10,11

Ортогональные проекции отрезка на три попарно перпендикулярные прямые равны 1, 2 и 3. Найдите длину этого отрезка.
Прислать комментарий     Решение


Задача 34917

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Куб ]
[ Объем тетраэдра и пирамиды ]
Сложность: 3+
Классы: 10,11

На какое наименьшее число тетраэдров можно разбить куб?

Прислать комментарий     Решение

Задача 64555

Темы:   [ Правильная пирамида ]
[ Куб ]
[ Длины сторон, высот, медиан и биссектрис ]
[ Теорема косинусов ]
[ Скалярное произведение ]
[ Векторы помогают решить задачу ]
Сложность: 3+

Дана правильная треугольная пирамида SABC, ребро основания которой равно 1. Из вершин A и B основания ABC проведены медианы боковых граней, не имеющие общих точек. Известно, что на прямых, содержащих эти медианы, лежат рёбра некоторого куба. Найдите длину бокового ребра пирамиды.

Прислать комментарий     Решение

Задача 65449

Темы:   [ Наглядная геометрия в пространстве ]
[ Куб ]
[ Равные треугольники. Признаки равенства (прочее) ]
Сложность: 3+
Классы: 6,7,8

Автор: Фольклор

В каждой вершине куба сидело по мухе. Потом все мухи разом взлетели и сели по одной в каждую вершину в каком-то другом порядке.
Докажите, что найдутся три мухи, которые в начальном и конечном положении сидели в вершинах равных треугольников.

Прислать комментарий     Решение

Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 302]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .