ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи С помощью циркуля и линейки постройте квадрат, три вершины которого лежали бы на трёх данных параллельных прямых. В трапеции ABCD биссектрисы углов A и D пересекаются в точке E, лежащей на боковой стороне BC. Эти биссектрисы разбивают трапецию на три треугольника, в которые вписали окружности. Одна из этих окружностей касается основания AB в точке K, а две другие касаются биссектрисы DE в точках M и N. Докажите, что BK = MN.
На плоскости даны точки A1 , A2 , An и точки B1 ,
B2 , Bn . Докажите, что точки Bi можно
перенумеровать так, что для всех i |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 222]
На плоскости дано n точек, причем любые три
из них можно накрыть кругом радиуса 1. Докажите, что
тогда все n точек можно накрыть кругом радиуса 1.
Дан выпуклый многоугольник
A1...An. Докажите,
что описанная окружность некоторого треугольника
AiAi + 1Ai + 2 содержит весь многоугольник.
На плоскости даны точки A1 , A2 , An и точки B1 ,
B2 , Bn . Докажите, что точки Bi можно
перенумеровать так, что для всех i
Некоторое количество точек расположено на плоскости так, что каждые 3 из них можно заключить в круг радиуса r = 1. Доказать, что тогда и все точки можно заключить в круг радиуса 1.
Сколькими способами можно переставить числа от 1 до 100 так, чтобы соседние числа отличались не более, чем на 1?
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 222]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке