ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Дан равносторонний треугольник ABC. Из его внутренней точки M опущены перпендикуляры MA', MB', MC' на стороны.
Найдите геометрическое место точек M, для которых треугольник A'B'C' – прямоугольный.

Вниз   Решение


Автор: Сонкин М.

В равнобедренном треугольнике ABC ( AB=BC ) проведена биссектриса CD . Прямая, перпендикулярная CD и проходящая через центр описанной около треугольника ABC окружности, пересекает BC в точке E . Прямая, проходящая через точку E параллельно CD , пересекает AB в точке F . Докажите, что BE=FD .

ВверхВниз   Решение


Автор: Сонкин М.

Треугольник ABC вписан в окружность S. Пусть A0 – середина дуги BC окружности S, не содержащей точку A, C0 – середина дуги окружности S, не содержащей точку C. Окружность S1 с центром A0 касается BC, окружность S2 с центром C0 касается AB. Докажите, что центр I вписанной в треугольник ABC окружности лежит на одной из общих внешних касательных к окружностям S1 и S2.

ВверхВниз   Решение


Угол боковой грани с плоскостью основания правильной треугольной пирамиды равен β . Найдите угол бокового ребра с плоскостью основания.

Вверх   Решение

Задачи

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 159]      



Задача 110488

Темы:   [ Правильная пирамида ]
[ Двугранный угол ]
[ Построения на проекционном чертеже ]
Сложность: 3
Классы: 10,11

В правильной четырёхугольной пирамиде SABCD , каждое ребро которой равно 2, построено сечение плоскостью, параллельной диагонали основания AC и боковому ребру SB пирамиды и пересекающей ребро AB . Найдите периметр многоугольника, полученного в этом сечении, если нижнее основание сечения равно .
Прислать комментарий     Решение


Задача 110489

Темы:   [ Правильная пирамида ]
[ Двугранный угол ]
[ Построения на проекционном чертеже ]
Сложность: 3
Классы: 10,11

В правильной четырёхугольной пирамиде SABCD , каждое ребро которой равно b , построено сечение плоскостью, параллельной диагонали основания BD и боковому ребру SA и пересекающей ребро AB пирамиды. Периметр многоугольника, полученного в этом сечении, равен 2(2++) . Найдите численное значение b , если нижнее основание сечения равно .
Прислать комментарий     Решение


Задача 110740

Темы:   [ Площадь и ортогональная проекция ]
[ Двугранный угол ]
Сложность: 3
Классы: 10,11

Докажите, что площадь ортогональной проекции плоского многоугольника на плоскость равна площади проектируемого многоугольника, умноженной на косинус угла между плоскостью проекций и плоскостью проектируемого многоугольника.
Прислать комментарий     Решение


Задача 111097

Темы:   [ Правильная пирамида ]
[ Двугранный угол ]
[ Углы между прямыми и плоскостями ]
Сложность: 3
Классы: 10,11

Угол бокового ребра с плоскостью основания правильной треугольной пирамиды равен α . Найдите угол боковой грани с плоскостью основания.
Прислать комментарий     Решение


Задача 111098

Темы:   [ Правильная пирамида ]
[ Двугранный угол ]
[ Углы между прямыми и плоскостями ]
Сложность: 3
Классы: 10,11

Угол боковой грани с плоскостью основания правильной треугольной пирамиды равен β . Найдите угол бокового ребра с плоскостью основания.
Прислать комментарий     Решение


Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 159]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .