ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В выпуклом четырёхугольнике ABCD выполняются равенства:  ∠B = ∠C  и  CD = 2AB.  На стороне BC выбрана такая точка X, что  ∠BAX = ∠CDA.
Докажите, что  AX = AD.

   Решение

Задачи

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 292]      



Задача 115316

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Четырехугольники (прочее) ]
[ Вспомогательные равные треугольники ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3+
Классы: 8,9

В выпуклом четырёхугольнике ABCD выполняются равенства:  ∠B = ∠C  и  CD = 2AB.  На стороне BC выбрана такая точка X, что  ∠BAX = ∠CDA.
Докажите, что  AX = AD.

Прислать комментарий     Решение

Задача 115882

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Вписанный четырехугольник с перпендикулярными диагоналями ]
[ Биссектриса угла (ГМТ) ]
Сложность: 3+
Классы: 8,9,10,11

Автор: Шноль Д.Э.

Биссектрисы углов трапеции образуют при пересечении четырёхугольник с перпендикулярными диагоналями.
Докажите, что трапеция равнобокая.

Прислать комментарий     Решение

Задача 116157

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Средняя линия трапеции ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Средняя линия треугольника ]
[ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9

B трапеции ABCD  AB = BC = CDCH – высота. Докажите, что перпендикуляр, опущенный из H на AC, проходит через середину BD.

Прислать комментарий     Решение

Задача 116174

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Неравенство треугольника (прочее) ]
[ Симметрия помогает решить задачу ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Кривые второго порядка ]
Сложность: 3+
Классы: 9,10,11

Автор: Фольклор

B некоторой трапеции сумма длин боковой стороны и диагонали равна сумме длин другой боковой стороны и другой диагонали.
Докажите, что трапеция равнобокая.

Прислать комментарий     Решение

Задача 116266

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Частные случаи треугольников (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9

Автор: Шевяков В.

Дан выпуклый четырёхугольник. Если провести в нём любую диагональ, он разделится на два равнобедренных треугольника. А если провести в нём обе диагонали сразу, он разделится на четыре равнобедренных треугольника. Обязательно ли этот четырёхугольник – квадрат?

Прислать комментарий     Решение

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 292]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .